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Abstract

Let G be a directed graph with an unknown flow on each edge such that the following flow conservation constraint is
maintained: except for sources and sinks, the sum of flows into a node equals the sum of flows going out of a node.
Given a noisy measurement of the flow on each edge, the problem we address, which we call the MOST PROBABLE FLOW

ESTIMATION problem (MPFE), is to estimate the most probable assignment of flow for every edge such that the flow
conservation constraint is maintained. We provide an algorithm called DY-MPFE for solving the MPFE problem when
the measurement error is Gaussian (GAUSSIAN-MPFE). The algorithm works in O(jEj + jVj2) when the underlying
undirected graph of G is a 2-connected planar graph, and in O(jEj + jVj) when it is a 2-connected serial-parallel graph
or a tree. This result is applicable to any MINIMUM COST FLOW problem for which the cost function is se(Xe � le)

2 for
edge e where le and se are constants, and Xe is the flow on edge e. We show that for all topologies, the GAUSSIAN-
MPFE�s precision for each edge is analogous to the equivalent resistance measured in series to this edge in an electrical
network built by replacing every edge with a resistor reflecting the measurement�s precision on that edge.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Let G be a directed graph with an unknown flow on each edge such that the following flow conservation
constraint is maintained: the sum of flows into an internal node equals the sum of flows going out of an
internal node. Given a noisy set of measurements of the flow on each edge and assuming an independent
measurement error, the problem we address, which we call the MOST PROBABLE FLOW ESTIMATION problem
(MPFE), is to estimate the most probable assignment of flow for every edge such that the flow conservation
constraint is maintained.
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Fig. 1. Flow network.
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Most probable flow estimation is appropriate whenever a coherent estimation of flow is desired. For
example, estimation of currents in electrical networks, traffic estimation in roads, throughput estimation
in computer networks and vehicle number estimation in group tracking scenarios, where edges represent
tracks in an arena and internal nodes correspond to the merger or separation of groups of vehicles (Zohar
and Geiger, 2003). Consider for example the network in Fig. 1. The numbers on the edges represent the
exact flows in the network. Typically, in real-world scenarios, the exact flows are unknown and only a
set of noisy measurements is at hand. In such scenarios, MPFE provides a mechanism for better utilizing
individual independent sensors by employing the flow conservation constraints.

Notably, MPFE is a special case of the MINIMUM COST FLOW problem (Ahuja et al., 1993). The MPFE
problem also relates to finding inference procedures for probabilistic networks over continuous random
variables (Cowell et al., 1999). The MPFE problem was originally defined in Zohar and Geiger (2003),
along with an O(jEj + jVj) algorithm for solving the problem when the measurement error is Gaussian
(GAUSSIAN-MPFE), on networks whose underlying undirected structure is a tree.

We provide an algorithm called DY-MPFE for solving GAUSSIAN-MPFE in O(jEj + jVj2) when the under-
lying undirected graph of G is a 2-connected planar graph, and in O(jEj + jVj) when it is a 2-connected serial-
parallel graph or a tree. This result is applicable to any MINIMUM COST FLOW problem for which the cost
function is se(Xe � le)

2 for edge e where le and se are constants, and Xe is the flow on edge e. For general
graphs, the problem can be solved in O(jEj3) steps by general techniques, as described in Section 3. Our algo-
rithm consists of the application of a sequence of transformations on an input flow network G.

The rest of this paper is organized as follows. We first provide a formal description of the flow estimation
problem (Section 2) and discuss related problems and past solutions (Section 3). Then, we review a set of
graph transformations (Section 4), present the algorithm, and prove its correctness (Sections 5 and 6). We
show that for all topologies, the GAUSSIAN-MPFE�s precision for each edge is analogous to the equivalent
resistance measured in series to this edge in an equivqlent electrical network (Section 7) and conclude with a
discussion (Section 8).
2. Problem formulation

A flow network is a weighted directed graph G = (V, E, w) where V is a set of nodes, E is a set of m direc-
ted edges, and w : E ! R is a flow function which assigns for every edge (u, v) 2 E a flow w(u, v). This flow is
said to be directed from u to v whereas the flow in the opposite direction is defined to have an opposite sign,
that is, w(v, u) � � w(u, v). In the following, we also denote an edge (u, v) by uv. A flow on a set of edges Q is
defined via wðQÞ ¼

P
l2QwðlÞ. An internal node is a node that has some edges coming into it and some that

are leaving it. A source is a node with a single outgoing edge and no incoming edges and a sink is a node
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with a single incoming edge and no outgoing edges. Let S denote the set of sources and let T denote the set
of sinks. Let a(v) and b(v) denote the sets of edges into node v and out of node v, respectively. Then for
every internal node,X X
l2aðvÞ
wðlÞ ¼

l2bðvÞ
wðlÞ ð2:1Þ
and
 X
s2S

wðbðsÞÞ ¼
X
t2T

wðaðtÞÞ. ð2:2Þ
These flow conservation constraints (aka. Kirchhoff�s law) are linear and can be represented using an n · m

constraint matrix A via the equation AX = 0, where n is the number of rows, one per internal node, m = jEj
is the number of columns, one per edge, Xj = w(lj) is the flow on edge lj, and X = (X1, . . . , Xm). In partic-
ular, for every internal node vi and edge lj, we set Aij = �1 if edge lj points to vi, Aij = 1 if edge lj points
away from vi, and Aij = 0 otherwise. For example, in Fig. 1, nodes v3, v4, v5 are internal nodes, the flow
conservation constraints are X2 = X3 + X4, X1 + X3 = X5, X4 = X6 + X7 and the constraint matrix A is
0 �1 1 1 0 0 0

�1 0 �1 0 1 0 0

0 0 0 �1 0 1 1

0
B@

1
CA.
We define the MOST PROBABLE FLOW ESTIMATION (MPFE) problem as follows:
Instance: Let G = (V, E, Æ) be a flow network constrained by AX = 0, where X = (X1, . . . , Xm) is the

(unknown) flow on each edge and A is the constraint matrix of the flows. Let ei be the measured flow
on the ith edge. Let the conditional probability P(eijXi) be an error term expressing the uncertainty in a
measured flow ei given the true flow Xi on an edge.

Query: Compute
X �G ¼ arg max
X

s:t: AX¼0

Ym
i¼1

P ðeijX iÞ. ð2:3Þ
Our formulation of the problem is based on the assumption that the measurement on each edge is indepen-
dent of measurements on other edges given the true flow on that edge.

This paper focuses on GAUSSIAN-MPFE problems where the error term P(eijXi) is a normal distribution
function given by
NðeijX i; siÞ �
ffiffiffiffiffiffi
si

2p

r
exp � siðX i � eiÞ2

2

( )
; ð2:4Þ
where si is the precision of the measurement on the ith edge. The precision is the reciprocal of the variance,
namely si � r�2

i . We denote an instance of the GAUSSIAN-MPFE problem by a tuple (G, e, s), where
G = (V, E, Æ) is a flow network with unknown flows, e is a vector of flow measurements, and s is a vector
of corresponding measurement precisions. The selection of the error term as a normal distribution function
is adequate for various applications and yields efficient algorithms as discussed in the following.
3. Related work

The GAUSSIAN-MPFE problem can be solved for arbitrary topologies of flow networks in O(jEj3) steps
by various well-known techniques which we now explicate.
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First, the MPFE problem is a special case of the MINIMAL COST FLOW (MCF) PROBLEM (Ahuja et al.,
1993). The input of an MCF problem is a directed graph with a cost function Ge(fe) of the flow fe on each
edge e. The output is an assignment of flows that minimizes the total cost

P
eGeðfeÞ and satisfies the flow

conservation constraints. The MPFE problem is a special case of MCF because the cost function can be
selected for edge li to be � log P ðei j X iÞ. There are several efficient algorithms for solving MCF with convex
cost functions which are applicable to the MPFE problem. For example, the CAPACITY SCALING algorithm
works in O((jEjlog U)(jEj + jVjlogjVj)) where U is the maximal capacity in the network. For the GAUS-

SIAN-MPFE problem, taking the logarithm of Eq. (2.3), using Eq. (2.4), yields a special form of a MINIMUM

COST FLOW PROBLEM, namely, an MCF problem where Ge(Xe) = se (Xe � le)
2. Such quadratic optimization

problems can be solved exactly using Lagrange multipliers, in time complexity O(jEj3) for general graphs.
Another approach is Linear Minimum Variance Unbiased estimation (LMVU). It is based on the fol-

lowing theorem from Kay (1993) which provides a unified approach for the formulation and solution of
diverse problems including GAUSSIAN-MPFE as a special case:

Theorem 3.1. If data can be modeled as
x ¼ Hhþ w;
where x is a vector of N observations, H is a known N · t matrix (N > t) of rank t, h is a vector of t parameters

to be estimated, and w is a noise vector with pdf N(xj0, C�1) then the LMVU estimator of h is
ĥ ¼ ðHTC�1HÞ�1HTC�1x
and the (estimator�s) covariance matrix is
Cĥ ¼ ðH TC�1HÞ�1.
For the GAUSSIAN-MPFE problem, the h vector represents a set of t independent flows. Since the flow
conservation constraints are linear, the flow on each edge is represented using Hh. Since the computation
of ĥ and Cĥ requires matrix inversions, it requires O(jEj3) time complexity and O(jEj2) space complexity.
The main disadvantage of this solution for the GAUSSIAN-MPFE problem and the solution via Lagrange
multipliers is the fact that these solutions do not use the topology of the graph and are therefore less effi-
cient in some cases, as we demonstrate in this work. An advantage of this method is the computation of Cĥ

which is not available via minimal cost flow algorithms. We return to this point in Section 7.
A third approach is to translate a given flow network into a Gaussian network (Cowell et al., 1999; Lau-

ritzen, 1992; Shachter and Kenley, 1989; Lauritzen and Jensen, 2001). In Gaussian networks each variable v

is normally distributed with a mean that is a linear function of the nodes that point into it and with a con-
ditional variance that is fixed given the variables that point into v. This framework can be used to represent
flow conservation constraints because, in the limit, when a variance of a variable tends to zero, the variable
becomes a linear function of the variables that point to it. However, by transforming the flow network into
a Gaussian network, some independence assertions are lost and therefore the clique-tree algorithm (Jensen,
1996) yields an O(jEj3) algorithm even in cases where an O(jEj + jVj) algorithm can be found (Zohar and
Geiger, 2003).
4. Series-parallel and DY transformations

We now concentrate on the class of DYD-reducible graphs which include the classes of planar and serial-
parallel graphs. The reduction algorithms for these graphs are used by our algorithm for efficiently solving
the MPFE problem (Section 5).
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The underlying graph of a directed graph G is an undirected graph having the same set of nodes and hav-
ing one undirected edge xy for every directed edge xy or yx in G. Two nodes are connected in a directed
graph G if there exists a path between them in the underlying graph of G. A 2-connected directed graph

is a directed graph whose underlying graph remains connected when a single node and its incident edges
are removed. A polytree is a directed graph whose underlying graph is a tree. In a polytree there are possibly
several sources, in contrast to directed trees that have one source called root. A wye node (Y) is a node of
degree three. A delta triangle (D) is a cycle of three different nodes.

A 2-connected directed graph is series-parallel reducible if it can be reduced to a single edge by a sequence
of the following transformations:

T0 (edge-reversal): Reverse the direction of an edge xy to yx.
T1 (self-loop reduction): Delete an edge l whose both endpoints are the same node.
T2 (series reduction): Delete a node y of degree two, remove its two incident edges xy and yz, and add a
new edge xz.
T3 (parallel reduction): Delete one of a pair of parallel edges.

A 2-connected directed graph is called DYD-reducible if it can be reduced to a single edge by transfor-
mations T0–T3 and the following:

T4 (delta-wye transformation): Delete the edges of a delta triangle (xy, xz, zy), and add a new node w and
new edges xw, wy, and wz.
T5 (wye-delta transformation): Delete a wye node w and its three incident edges xw, wy, wz, and add a
delta triangle (xy, xz, zy).

Transformations T0–T5 are depicted in Fig. 2.
The existence of an efficient recognition algorithm of DYD-reducible graphs is an open question, but par-

tial results are known. Every 2-connected planar graph is DYD-reducible (Epifanov, 1966). The best known
reduction algorithm for 2-connected planar graphs, named DWR, requires O(jEj + jVj2) operations (Feo
and Provan, 1993). In this remarkable paper, it is conjectured that an O(jEj + jVj1.5) algorithm is attain-
able. In Valdes et al. (1982) an O(jEj + jVj) algorithm is given for recognizing and reducing 2-connected
series-parallel reducible graphs. Clearly, not every 2-connected graph is DYD-reducible because, for exam-
ple, none of the transformations T1–T5 are applicable to any graph with no parallel edges such that each
node is connected to at least four other nodes and where the minimum length of a cycle is four. Another
example is K6, namely, the full graph with 6 nodes, which can not be reduced by these transformations to a
single edge (Warkentyne, 1988).

Some authors allow in their definition of DYD-reducible graphs an additional transformation, named the
pendant edge reduction, for reducing a node of degree 1 and its incident edge. This addition changes the class
of DYD-reducible graphs. However, for 2-connected graphs, the two classes of graphs are equivalent. Fur-
thermore, although polytrees are not 2-connected directed graphs, the MPFE problem on a polytree G is
reduced to an MPFE problem on a 2-connected directed graph by connecting all sources and sinks of G to a
single node because the resulting graph is planar. On the other hand, if a planar graph G is not 2-connected,
then connecting all sources and sinks of G to a single node may result in a non-planar graph. This is the
reason for requiring the input graphs to be 2-connected. Finally, in some papers it is implicitly assumed
that the original graph contains no parallel edges. This affects complexity calculation since an O(jEj) pro-
cess is required for transforming a given graph to a graph with no parallel edges, using T3. Our algorithm
allows an input graph to contain parallel edges and therefore we have adjusted the complexity statements
accordingly in our presentation of previous reduction algorithms, replacing O(jVj) with O(jEj + jVj) and
O(jVj2) with O(jEj + jVj2).



Fig. 2. Transformations T0–T5.
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5. The algorithm

In this section we develop an algorithm for the flow estimation problem, where the flow network G is a
DYD-reducible graph. The algorithm, DY-MPFE, performs at each step a single transformation which com-
bines a graph transformation as presented in the previous section (T0–T5) with the required changes of the
measurements and their precisions. The combined transformations are denoted by M0–M5, corresponding
to transformations T0–T5, respectively. When a single edge remains, the optimal flow for the remaining
edge becomes available. Then, inverse transformations are used for backtracking the sequence of transfor-
mations and for computing in reverse order the most probable flow for every edge in the graph. Assuming k
transformations reduce a graph G to a single edge, the algorithm finds the most probable flow for every
edge in the graph in O(k) steps. The size k is determined by the reduction algorithm used, which yields
an O(jEj + jVj2) algorithm when G is planar (using DWR) and an O(jEj + jVj) algorithm when G is a
serial-parallel reducible graph.

Let exy and sxy denote the measurement and precision of measurement on an edge xy. The MPFE trans-

formations are defined as follows:

M0 (MPFE edge-reversal): Reverse the direction of an edge xy to yx. Set
eyx ¼ �exy ; syx ¼ sxy .
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M1 (MPFE self-loop reduction): Delete an edge l whose both endpoints are the same node.
M2 (MPFE series reduction): Delete a node y of degree two, remove its two incident edges xy and yz, and
add a new edge xz. Set

exz ¼
sxyexy þ syzeyz

sxy þ syz
; sxz ¼ sxy þ syz.

M3 (MPFE parallel reduction): Delete a pair of parallel edges xy1, xy2, and add a new edge xy3. Set

exy3 ¼ exy1 þ exy2; sxy3 ¼
sxy1sxy2

sxy1 þ sxy2

.

M4 (MPFE delta-wye transformation): Delete the edges of a delta triangle (xy, xz, zy), and add a new
node w and new edges xw, wy, and wz. Set

exw ¼ exy þ exz; sxw ¼
sxysxz

sxy þ sxz þ szy

ewy ¼ exy þ ezy ; swy ¼
sxyszy

sxy þ sxz þ szy

ewz ¼ exz � ezy ; swz ¼
sxzszy

sxy þ sxz þ szy
.

M5 (MPFE wye-delta transformation): Delete a wye node w and its three incident edges xw, wy, wz, and
add a delta triangle (xy, xz, zy). Set

exy ¼ ewy �
sxwswzðewz þ ewy � exwÞ
sxwswy þ sxwswz þ swyswz

; sxy ¼
sxwswy þ sxwswz þ swyswz

swz
;

exz ¼ ewz �
sxwswyðewz þ ewy � exwÞ
sxwswy þ sxwswz þ swyswz

; sxy ¼
sxwswy þ sxwswz þ swyswz

swy
;

ezy ¼ 0; szy ¼
sxwswy þ sxwswz þ swyswz

sxw
.

Note that M0–M5 transform one instance (G, e, s) of MPFE to another. We denote by M(G, e, s) the MPFE
instance resulting from applying a transformation M to (G, e, s).

The inverse MPFE transformations are used to undo the MPFE transformations by using the most prob-
able flow found for some edges to find the most probable flow for others. We use X �xy to denote the most
probable flow on edge xy and X �G to denote the most probable flow for a graph G. Denote by IMðX �GÞ the
most probable flow for a graph obtained from G by applying an inverse MPFE transformation IM. The
inverse MPFE transformations are defined as follows:

IM0 (inverse MPFE edge-reversal): Reverse the direction of an edge yx to xy. Set
X �xy ¼ �X �yx.

IM1 (inverse MPFE self-loop reduction): Restore a deleted loop l. Set

X �l ¼ el.

IM2 (inverse MPFE series reduction): Delete an edge xz and restore the serial edges xy and yz. Set

X �xy ¼ X �xz;

X �yz ¼ X �xz.
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IM3 (inverse MPFE parallel reduction): Delete an edge xy3 and restore the parallel edges xy1, xy2.
Set

X �xy1 ¼
sxy1exy1 þ sxy2ðX �xy3 � exy2Þ

sxy1 þ sxy2

;

X �xy2 ¼ X �xy3 � X �xy1.

IM4 (inverse MPFE delta-wye transformation): Delete the wye node w and edges xw, wy, and wz, and
restore the delta triangle (xy, xz, zy). Set
Fig. 3. Algorithm DY-MPFE.



Fig. 4. (a) A flow network with three edges; (b) the network obtained by applying MPFE transformation M3 on (a); (c) the network
obtained by applying MPFE transformation M2 on (b). On each edge the flow and precision are indicated.
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X �xy ¼
sxzX �xw þ szyX �wy þ sxyexy � sxzexz � szyezy

sxy þ sxz þ szy
;

X �xz ¼
ðsxy þ szyÞX �xw � szyX �wy � ðsxyexy � sxzexz � szyezyÞ

sxy þ sxz þ szy
;

X �zy ¼
�sxzX �xw þ ðsxy þ sxzÞX �wy � ðsxyexy � sxzexz � szyezyÞ

sxy þ sxz þ szy
.

IM5 (inverse MPFE wye-delta transformation): Delete a delta triangle (xy, xz, zy) and restore the wye
node w and its three incident edges xw, wy, wz. Set

X �xw ¼ X �xy þ X �xz;

X �wy ¼ X �xy þ X �zy ;

X �wz ¼ X �xz � X �zy .

Our algorithm is presented in Fig. 3. It uses a generic DY reduction algorithm, denoted DYR, which reduces
a given DYD-reducible graph using transformations T0–T5. Such DY reduction algorithms are usually pre-
sented for undirected graphs and therefore do not use transformation T0. We can adopt any DY reduction
algorithm for undirected graphs by using T0 for reversing edges as required. In Fig. 4, an example is pre-
sented of applying the forward-phase of DY-MPFE on a simple network.
6. Correctness and properties

We start with several algebraic propositions needed for proving correctness of algorithm DY-MPFE. It is
convenient to denote the normal distribution N(eijXi, si) with fei ;siðX iÞ.

Proposition 6.1
arg max
X

Yk

j¼1

fej;sjðX Þ ¼ arg max
X

fE;T ðX Þ;
where T ¼
Pk

j¼1sj and E ¼ 1
T

Pk
j¼1sjej.
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Proof
Yk

j¼1

fej;sjðX Þ ¼ C1

Yk

j¼1

exp � 1

2
sjðX � ejÞ2

� �
¼ C2 exp � 1

2

Xk

j¼1

sj

 !
X 2 � 2X

Pk
j¼1sjejPk

j¼1sj

 !( )

¼ C3 exp � 1

2
TðX � EÞ2

� �
¼ C4fE;T ðX Þ;
where C1 through C4 are constants. h

An immediate consequence of Proposition 6.1 is that serial edges in an instance of the Gaussian-MPFE
problem may be replaced by a single edge with equivalent measurement and precision of measurement, such
that performing most probable flow estimation on the resulting network is the same as on the original. This
idea, of iteratively simplifying the graph structure along with locally modifying measurements and preci-
sions values, also motivates the following propositions.

Proposition 6.2. Let LðX pÞ ¼ maxX l;X r fll;slðX lÞflr ;srðX rÞ, where Xl + Xr = Xp and Xp is given. Then
LðX pÞ ¼ Cf llþlr ;
srsl

srþsl
ðX pÞ;
where C is a constant.

Proof. L(Xp) can be rewritten as follows:
LðX pÞ ¼ max
X l

fll;slðX lÞflr ;srðX p � X lÞ. ð6:5Þ
The value X �l which maximizes L(Xp) is given by
X �l ¼ arg min
X l

slðX l � llÞ
2 þ srðX p � X l � lrÞ

2 ¼ slll þ srX p � srlr

sl þ sr
; ð6:6Þ
which is a global minimum because (6.6) is quadratic. Consequently, the two terms of Eq. (6.5) can be writ-
ten as follows:
fll;slðX �l Þ ¼ C1 exp
�sls2

r

2ðsl þ srÞ2
ðX p � ðlr þ llÞÞ

2

( )
¼ C01f

lrþll;
sls

2
r

ðslþsr Þ2
ðX pÞ
and
flr ;srððX p � X �l ÞÞ ¼ C02f
llþlr ;

srs2
l

ðslþsr Þ2

ðX pÞ.
Using Proposition 6.1 yields the desired claim. h

Proposition 6.3. Let
LðX a;X bÞ ¼ max
X 1 ;X 2 ;X 3

s:t:: X 1þX 2¼X a
X 1þX 3¼X b

fe1;s1
ðX 1Þfe2;s2

ðX 2Þfe3;s3
ðX 3Þ;
where Xa and Xb are given. Then
LðX a;X bÞ ¼ fe1þe2;
s1s2

s1þs2þs3

ðX aÞfe1þe3;
s1s3

s1þs2þs3

ðX bÞfe2�e3;
s2s3

s1þs2þs3

ðX a � X bÞ.
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Proof. The values X �1;X
�
2;X

�
3 which maximize L(Xa, Xb) are given by
ðX �1;X �2;X �3Þ ¼ arg min
X 1 ;X 2 ;X 3

s:t:: X 1þX 2¼X a

X 1þX 3¼X b

s1ðX 1 � e1Þ2 þ s2ðX 2 � e2Þ2 þ s3ðX 3 � e3Þ2.
ð6:7Þ
The unique solution of this quadratic problem, using Lagrange multipliers, is
X �1 ¼
s2X a þ s3X b þ s1e1 � s2e2 � s3e3

s1 þ s2 þ s3

;

X �2 ¼
ðs1 þ s3ÞX a � s3X b � ðs1e1 � s2e2 � s3e3Þ

s1 þ s2 þ s3

;

X �3 ¼
�s2X a þ ðs1 þ s2ÞX b � ðs1e1 � s2e2 � s3e3Þ

s1 þ s2 þ s3

.

Substituting these values in L(Xa, Xb) and rearranging terms yields the required result. h

Proposition 6.4. Let
LðX a;X bÞ ¼ max
X 1 ;X 2 ;X 3

s:t:: X 1þX 2¼X a
X 1þX 3¼X b

f�c1þeb�
sascðecþeb�eaÞ

T ; T
sc

ðX 1Þfc1þec�
sasbðecþeb�eaÞ

T ; T
sb

ðX 2Þfc1;
T
sa
ðX 3Þ;
where T = sasb + sasc + sbsc, Xa and Xb are given, and where c1 is a constant. Then,
LðX a;X bÞ ¼ c2fea;saðX aÞfeb;sbðX bÞfec;scðX a � X bÞ;
where c2 is a constant.

Proof. By applying Proposition 6.3 and rearranging terms the proof follows. h

Propositions 6.3 and 6.4 are key contributions that facilitate our algorithm. Together with Propositions
6.1 and 6.2 they imply that the most probable flow for a given MPFE instance (G, e, s) is derivable from the
most probable flow for a simpler instance obtained from (G, e, s) by one of the transformations M0–M5.
This claim is proven in the following lemma.

Lemma 6.5. Let (G, e, s) be an instance of the GAUSSIAN-MPFE problem where G has at least 2 edges, and let
Mi and IMi be the MPFE transformations and their inverses, where i = 0, . . . , 5. Then, the most probable flow,

denoted by X �G, can be found as follows:

1. (G 0, e 0, s)  Mi(G, e, s).

2. X �G0  MPFE for the instance (G 0, e 0, s 0).
3. X �G  IMiðX �G0Þ.

Proof. The claim is proven for each of the six transformations.
Transformation M0. Eq. (2.3) has the form
X �G ¼ arg max
s:t: AX¼0

fexy ;sxy ðX xyÞ
Y

i2Enfxyg
fei;siðX iÞ ¼ arg max

s:t: AX¼0

f�exy ;sxy ð�X xyÞ
Y

i2Enfxyg
fei ;siðX iÞ;
where En{xy} are all the edges of G excluding edge xy.
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Transformation M1. The flow in a self-loop l is not constrained by the flow in other edges of the flow
network. Hence removing l from (G, e, s) (step 1), solving (G 0, e 0, s 0) (step 2), and then assigning X �l  el

which maximizes fel;sl yields X �G.
Transformation M2. Rewrite Eq. (2.3) as
X �G ¼ arg max
s:t: AX¼0

fexy ;sxy ðX xyÞfeyz;syzðX yzÞ
Y

i2Enfxy;yzg
fei ;siðX iÞ. ð6:8Þ
For serial edges xy and yz, we have Xxy = Xyz. Using Proposition 6.1 on Eq. (6.8) yields
X �G ¼ arg max
s:t: AX¼0

fsxy exyþsyzeyz
sxyþsyz

;sxyþsyz
ðX xyÞ

Y
i2Enfxy;yzg

fei;siðX iÞ. ð6:9Þ
Replacing Xxy with Xxz, which are equal, in Eq. (6.9) yields the solution for the MPFE instance (G 0, e 0, s)
where the serial edge xy and yz are replaced with the edge xz.

Transformation M3. Rewrite Eq. (2.3) as
X �G ¼ arg max
s:t: AX¼0

fexy1;sxy1
ðX xy1Þfexy2;sxy2

ðX xy2Þ
Y

i2Enfxy1;xy2g
fei ;siðX iÞ. ð6:10Þ
For parallel edges xy1 and xy2, every constraint in AX = 0 which includes either of the variables Xxy1 or
Xxy2 includes their sum. We replace their sum each time it appears by a variable Xxy3, and add the con-
straint Xxy1 + Xxy2 = Xxy3. Since this is the only constraint where either Xxy1 or Xxy2 appears, Eq. (6.10)
is rewritten as follows:
X �G0 ¼ arg max
s:t: A0X 0¼0

Y
i2Enfxy1;xy2g

fei ;siðX iÞ max
s.t. X xy1þX xy2¼X xy3

fexy1;sxy1
ðX xy1Þfexy2;sxy2

ðX xy2Þ;
where A 0X 0 = 0 denotes the modified set of constraints. Using Proposition 6.2 we obtain
X �G0 ¼ arg max
s:t: A0X 0¼0

f
exy1þexy2;

sxy1sxy2
sxy1þsxy2

ðX xy3Þ
Y

i2Enfxy1;xy2g
fei;siðX iÞ. ð6:11Þ
Eq. (6.11) is the MPFE equation for the MPFE instance (G 0, e 0, s 0) = M3(G, e, s) (step 1). Let
X �G0 ¼MPFEðG0; e0; s0Þ be the optimal flow for the edges of G 0 (step 2). One of these edges is xy3 whose
flow is the sum of flows on xy1 and on xy2. Eq. (6.6) yields the optimal flow on xy1 for every flow on
xy3, namely,
X �xy1 ¼
sxy1exy1 þ sxy2ðX �xy3 � exy2Þ

sxy1 þ sxy2

.

The flow X �xy2 is determined by Xxy1 + Xxy2 = Xxy3. These flows are those computed by IM3(G 0) (step 3).
Transformation M4. The proof is similar to the previous case. Proposition 6.3 is used similarly to the way

Proposition 6.2 is used for transformation M3.
Transformation M5. The proof is similar to that of transformation M3, using Eq. (6.11) first, then Eq.

(6.10) and finally invoking Proposition 6.4. h

The next theorem proves the correctness of algorithm DY-MPFE and analyzes its complexity.

Theorem 6.6. Let (G, e, s) be an instance of the GAUSSIAN-MPFE problem where G is a 2-connected DYD-

reducible graph. Let DYR denote a DY reduction algorithm which reduces G to a single edge using k T0–T5
transformations. Then, DY-MPFE computes the most probable flow for every edge in G in time complexity O(k).
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Proof. If G has a single edge, then the optimal value for that edge is the measurement on that edge. When G

has two edges or more, Lemma 6.5 applies and the proof follows inductively. The DY-MPFE algorithm
requires k MPFE-transformations and k inverse MPFE-transformations each of O(1) time complexity
yielding overall O(k) time complexity. h

Theorem 6.7. Let (G, e, s) be a GAUSSIAN-MPFE problem. Then, DY-MPFE computes the most probable flow

for every edge in G in time complexity O(jEj + jVj2) if G is a 2-connected planar graph and in O(jEj + jVj)
if G is a 2-connected serial-parallel graph or a tree.

Proof. The proof follows from Theorem 6.6 and from the complexity of known reduction algorithms for
different topologies. For a 2-connected planar graph, algorithm DWR (Feo and Provan, 1993; Feo and
Provan, 1996) has time complexity O(jEj + jVj2), where serial-parallel graphs may be reduced to a single
edge in O(jEj + jVj) (Valdes et al., 1982). The problem of solving MPFE on trees is reduced to solving
it on serial-parallel graphs by merging all sources and sinks to a single node. h

Corollary 6.8. A MINIMUM COST FLOW problem for which the cost function is se (Xe � le)
2 for edge e, can be

solved in O(jEj + jVj2) for 2-connected planar graphs and in O(jEj + jVj) for 2-connected serial-parallel

graphs.

Proof. The claim follows from Theorems 6.6 and 6.7, and from the fact that such instances of the MINIMUM

COST FLOW problem are in fact instances of the MPFE problem. h

Corollary 6.8 is an extension of Theorem 3 in Feo and Provan (1993) in which le = 0 for all edges.
7. MPFE precision

The precision of the flow estimation on the ith edge is the reciprocal of the variance for the flow estima-
tion for that edge. In Section 3 we described the LMVU method and its application to flow estimation. This
method can be used to compute the covariance matrix Cĥ, where the diagonal values represent the flow esti-
mation variances. The precisions of the flow estimations are the diagonal elements of the inverse matrix
C�1

ĥ .
In this section we examine an analogy between Gaussian-MPFE and electrical networks, relating preci-

sions of flow estimators and equivalent resistances. In an electrical network with no sources, the equivalent
resistance Req in series to resistor r is defined as the reciprocal of the current through r resulting from a unit-
voltage-source added in series to it. A well-known result is that the equivalent resistance of resistors con-
nected in series is the sum of their resistances. Proposition 6.1 shows that the precision of a flow estimator
for edges connected in series is the sum of their measurement�s precisions. A similar analogy holds for par-
allel edges (Proposition 6.2). Figs. 4 and 5 develop this example further.

Let (G, e, s) be a GAUSSIAN-MPFE problem. A (G, e, s)-equivalent electrical network is a network built
from a flow network G by replacing every edge li with a resistor ri with resistance Ri = si. The rest of this
section shows that for all graph topologies, the precision of the (G, e, s)-MPFE estimator for edge li is iden-
tical to the equivalent resistance in series to li in the (G, e, s)-equivalent electrical network. This result con-
nects the Most Probable Flow Estimation problem with several research areas related to electrical networks
and can be used for leveraging results from one domain to another.

Proposition 7.1. Let (G, e, s) be a GAUSSIAN-MPFE problem constrained by AX = 0, where A is a constraint
matrix which represents the flow conservation constraints on internal nodes. Let C be an jej by jej diagonal

matrix with cii = si. Then, the most probable flow is given by



Fig. 5. (a) An electrical network with a topology identical to that of the flow network in (a); in (b) a unit-voltage-source is added in
series to resistor r1; (c) presents the electrical network equations; (d) presents the solution of these equations for resistor r1.
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X � ¼ e� CATðACATÞ�1Ae ð7:12Þ
and the covariance matrix is
CX � ¼ ðC � CATðACATÞ�1ACÞ. ð7:13Þ
Proof. Taking the logarithm of Eq. (2.3) yields a sum of quadratic terms, constrained by a set of linear
equations. The Lagrangian is
L ¼ ðX � eÞTC�1ðX � eÞ þ kTAX ;
where k is a vector of Lagrange multipliers. Solving the Lagrangian yields Eq. (7.12). Noticing that in the
expression for the estimator X* only e is non-deterministic, the variance of X* may be written as
CX � ¼ ðI � CATðACATÞ�1AÞCðI � CATðACATÞ�1AÞT.
By rearranging terms, Eq. (7.13) follows. h

Theorem 7.2. Let (G, e, s) be a GAUSSIAN-MPFE problem. Let s�i be the precision of the flow estimation on

edge li. Let Req
i be the equivalent resistance in series to resistor ri in the (G, e, s)-equivalent electrical network.

Then, for every edge i, s�i ¼ Req
i .

Proof. Standard methods (Desoer and Kuh, 1969, pp. 424–425) provide a formula for the currents I on
each edge of an electrical network as a function of the resistances and voltage-sources in the network.
The standard formula is
I ¼ ðGATðAGATÞ�1AG� GÞV ; ð7:14Þ
where V is the voltage-sources vector, such that �vi is the voltage source in series to resistor ri, and where G

is a diagonal matrix, such that gii equals 1/Ri, and where A is a constraint matrix which represents Kirch-
hoff�s law on internal nodes, namely AI = 0. Since G is an electrical network with no sources, in order to
determine Req

i for a resistor ri, we add a unit-voltage-source in series to resistor ri and compute the resulting
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current on ri. Hence, V is a vector such that vj = 0 for j 5 i and vi = �1. It follows from Eq. (7.14) that
Req

i ¼ 1=dii, where D is given by
D ¼ G� GATðAGATÞ�1AG. ð7:15Þ
Eq. (7.15) is identical to Eq. (7.13), which completes the proof. h
8. Discussion

In this paper we have developed an algorithm for solving GAUSSIAN-MPFE problems. The algorithm�s
time complexity is O(jEj + jVj2) when the underlying undirected graph of G is a 2-connected planar graph,
and O(jEj + jVj) when it is a 2-connected serial-parallel graph or a tree. This result may be used to solve, in
the same time complexity, any MINIMUM COST FLOW problem for which the cost function is se(Xe � le)

2 for
edge e. In addition, we have shown an analogy between the precision of the estimated flow on each edge and
the equivalent resistance measured in series to this edge in an equivalent electrical network.

Our algorithm uses a generic DY-reduction algorithm. Consequently, it will benefit from any improve-
ments in reduction schemes for DYD reducible graphs, and from new classes of DYD reducible graphs; in
particular—the understanding of which non-planar topologies may exploit a DY-reduction procedure. Fur-
ther reductions beyond M0–M5 can extend the algorithm to additional graphs. Theorem 7.2 can be used
for leveraging results from the theory of electrical networks and related areas (e.g., Lyons and Peres, to
be published). For example, given an infinitely growing family of MPFE instances, to determine if and
when the variance of the most probable flow estimation tends to zero.
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