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Genetic Linkage Analysis in the Presence of
Germline Mosaicism

Omer Weissbrod and Dan Geiger

Abstract

Germline mosaicism is a genetic condition in which some germ cells of an individual contain
a mutation. This condition violates the assumptions underlying classic genetic analysis and may
lead to failure of such analysis. In this work we extend the statistical model used for genetic
linkage analysis in order to incorporate germline mosaicism. We develop a likelihood ratio test for
detecting whether a genetic trait has been introduced into a pedigree by germline mosaicism. We
analyze the statistical properties of this test and evaluate its performance via computer simulations.
We demonstrate that genetic linkage analysis has high power to identify linkage in the presence of
germline mosaicism when our extended model is used. We further use this extended model to
provide solid statistical evidence that the MDN syndrome studied by Genzer-Nir et al. has been
introduced by germline mosaicism.
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1 Introduction

Genetic linkage analysis is a widely used statistical method for associating disease

genes with their location on the chromosome. The principal idea behind genetic

linkage is that loci which are located in close proximity on the chromosome tend

to be passed together from parents to offspring. One can deduce the approximate

location of a causative gene by finding a group of adjacent genetic markers that seg-

regate healthy and affected individuals. Finding a causative gene sheds light on the

biological mechanism that malfunctions in affected individuals and is sometimes

the first step towards the development of a suitable remedy.

Genetic linkage analysis has been very successful in mapping genes in-

volved in simple Mendelian diseases. Well known examples include Duchenne

muscular dystrophy (DMD), cystic fibrosis (CF), and Huntington’s disease (HD)

(Borecki and Rice, 2010). However, it is less powerful in mapping genes involved

in traits that do not follow simple Mendelian inheritance patterns. Traits that do

not follow such patterns were once thought to rarely exist and received relatively

little attention. With the growing availability of genomic data, it becomes increas-

ingly clear that such human genetic traits are more frequent than previously thought

(Erickson and Lewis, 1995, Gropman and Adams, 2007, Yaron and Orr-Urtreger,

2002). Such traits violate some of the assumptions underlying classic genetic link-

age analysis, and thus their associated genes may elude detection. When a genetic

linkage analysis study fails, it may therefore still be possible to detect linkage by

changing the assumptions underlying the model used for the analysis. To date, there

has been little theoretical work trying to formulate statistical tests for identifying bi-

ological phenomena that do not follow simple Mendelian inheritance in pedigrees.

One common approach to dealing with such traits is employing non-parametric

linkage tests, which do not assume a specific mode of inheritance. However, these

tests lack statistical power in comparison to parametric tests that use an appropriate

explicit model (Strauch et al., 2000).

In this paper we develop an extended statistical model for genetic linkage

analysis to incorporate germline mosaicism (GM), which is a condition in which

some germ cells of an individual contain a mutation. Germline mosaicism has

been found in a variety of inherited traits (e.g. Barbosa et al., 2008, Choi et al.,

2008, Fabrizi et al., 2001, Khan et al., 2010, Makri et al., 2009, Pauli et al.,

2009). We use the extended statistical model to develop a parametric likelihood

ratio test to evaluate whether a specific individual in a given pedigree has GM

at a trait locus. Some theoretical aspects of GM have been studied before in

the context of risk occurrence (Edwards, 1989, Grimm et al., 1990, Hartl, 1971,

Jeanpierre, 1992, Murphy et al., 1974), but no statistical test has been proposed

previously for identification of GM in a pedigree. We demonstrate the effective-
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ness of the test by providing solid statistical evidence for GM in a pedigree af-

fected with MDN (Genzer-Nir et al., 2010), in which GM has been hypothesized.

A free computer package which performs this test is available to download at

http://bioinfo.cs.technion.ac.il/superlink-GM.

The rest of this article is organized as follows. Section 2 defines genetic

linkage analysis, germline mosaicism and explains the difficulty to identify GM in

pedigrees. Section 3 provides a statistical genetic model that incorporates GM and

a likelihood ratio test for detecting GM. It also demonstrates the statistical proper-

ties of this test and evaluates its effectiveness via computer simulations. Section 4

uses the statistical test to provide solid statistical evidence for GM in the pedigree

reported by Genzer-Nir et al. Finally, Section 5 discusses the merits and limitations

of the test and proposes future extensions.

2 Background

This section provides background information regarding genetic linkage analysis

and germline mosaicism, and demonstrates the difficulties of identifying GM by

standard methods.

2.1 The Standard Model

The standard genetic model used in linkage analysis has been widely studied (Elston

and Stewart, 1971, Friedman et al., 2000, Lander and Green, 1987). Every pedigree

can be described as a Directed Acyclic Graph (DAG) under this model (Fishelson

and Geiger, 2002). Figure 1 depicts a family of two parents and one child, denoted

by a, b and c, respectively. The model defines two random variables for each locus

of every individual in the pedigree, where the variables Gi,k,p and Gi,k,m denote the

paternal and maternal allele of individual i at locus k, respectively. The model also

defines selector variables (also called meiosis variables) denoted by S i,k,p and S i,k,m,

which indicate whether individual k received the paternal or the maternal allele of

her respective parent at locus i. The variable S i,k,p is equal to 0 if the paternal allele

of individual k at locus i is equal to the paternal allele of her father at locus i and is

equal to 1 otherwise. The variable S i,k,m is defined similarly for the maternal allele.

Two loci on the same chromosome are passed together from parent to child

if no recombination occurs between them during meiosis. The recombination fre-

quency between loci i and i+1, denoted as θi,i+1, lies in the interval [0,0.5], where

higher values correspond to a higher probability of recombination between the two

loci. Namely, θi,i+1 is equal to 0.5 when the two loci segregate independently. The
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Figure 1: A DAG representing a family with two parents and one child.

value of a selector variable at locus i+1 is different from the selector variable at lo-

cus i when a recombination occurs between the two loci, an event whose probability

is θi,i+1.

2.2 Genetic Linkage Analysis

Genetic linkage analysis is a statistical hypothesis test which determines whether a

certain genetic locus is linked to a genetic trait (Ott, 1999). The test compares the

hypothesis that the tested locus and the trait locus are linked with the null hypothesis

that they are unlinked, using a likelihood ratio test. The test computes:

LOD(A,G) , log10

[

Pr(A,G |L,γ,λ,θ∗)

Pr (A,G |U,γ,λ)

]

. (1)

The quantities in Equation 1 are defined as follows. The variables A and G

denote the phenotypic and genotypic data of the pedigree, respectively. The events

L and U denote that the trait locus is linked and unlinked to the tested locus, respec-

tively. The event L asserts that the recombination frequency between these two loci

is smaller than 0.5, while the event U asserts that it is equal to 0.5. The parameter
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θ is the recombination frequency between the two loci in the event of linkage, and

θ∗ is the maximum likelihood estimate of θ in the range [0,0.5). Finally, the pa-

rameters γ and λ correspond to the prevalence and the penetrance parameters of the

genetic trait, respectively. A value of LOD ≥ 3.3 is considered sufficient evidence

for linkage (Lander and Kruglyak, 1995).

The prevalence parameter γ corresponds to the probability that a chromo-

some of a randomly chosen individual carries a mutated allele. The penetrance

parameter λ is the probability of the phenotype given the genotype of an individual.

A genetic trait is said to have full penetrance if an individual who carries the num-

ber of mutated alleles required to cause affection is affected with 100% probability.

Otherwise, the trait has reduced penetrance.

2.3 Germline Mosaicism

Germline mosaicism (GM) is a condition in which part of the germ cells of an

individual contain a mutation (Zlotogora, 1998). This mutation can affect the phe-

notype of every child who was conceived from a mutated germ cell. The earlier the

mutation occurred in the development of the individual, the larger the percentage

of germ cells in the body which carry this mutation. When an unaffected parent has

several children affected with a genetic trait, without the parent having a family his-

tory of the trait, germline mosaicism is an optional explanation. It is not possible to

directly detect GM by genotyping unless the mutation altered the allele of a marker

that has been genotyped. It is therefore unlikely to directly detect GM even when

very dense marker maps are used.

An example of a pedigree with GM is given in Figure 2. Assume that the

first, second and fourth loci in each haplotype have been genotyped, while the third

locus has not been genotyped. This locus has two alleles, denoted by w and m,

where w is a wildtype gene and m is a mutated gene which causes affection. A

certain percentage of the germ cells of individual I-1 carry a mutation at the third

locus. The children of individual I-1 may therefore receive a mutated haplotype.

Mutated haplotypes are shown in striped gray, while non-mutated haplotypes are

shown in solid gray. It is impossible to distinguish mutated haplotypes from non-

mutated haplotypes by genotyping since the mutation only altered the gene at the

third locus, which has not been genotyped.

Figure 2 demonstrates that germline mosaicism creates inheritance patterns

that are highly unlikely under the assumptions of standard linkage analysis. For ex-

ample, individuals II-1 and II-3 have both received the same markers from their par-

ents, yet individual II-1 is affected while individual II-3 is not. This is because indi-

vidual II-1 received a mutated haplotype while individual II-3 received a wildtype
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Figure 2: A three generations pedigree whose male founder (I-1) has GM. Black

shading indicates affection and gray shading indicates an unknown affection status.

A haplotype with four loci is shown for each individual. Affected individuals carry

the mutated gene m.

haplotype. It is impossible to distinguish between these two haplotypes, since the

mutation has not altered any of the three measured markers. Offspring of individual

II-1 who received the gray-shaded haplotype are also affected, while offspring of

individual II-3 are not affected, even if they carry the gray-shaded haplotype. This

pattern is highly unlikely under the assumptions of standard genetic linkage analy-

sis, since one subpedigree shows evidence of linkage between a certain haplotype

and a genetic trait, while the other subpedigree does not. Double recombination

before and after the trait locus in the meiosis of every affected child is a possible

explanation, but it is hardly an option in dense maps. Reduced penetrance is also a

possible explanation, but this assumption becomes increasingly implausible as the

trait segregates more clearly in large subpedigrees. Standard genetic linkage anal-

ysis is therefore unlikely to succeed in demonstrating linkage between the trait and

the haplotype. In this work we overcome this obstacle by incorporating GM into

genetic linkage analysis.

2.4 Detection of GM by Model Comparison

Model comparison is typically performed in genetic linkage analysis by comparing

the likelihood of the phenotypic data of a pedigree under several competing models.
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For each pair of models denoted byM1 andM2, one computes the likelihood ratio

Pr (A |M1) / Pr(A |M2), where A denotes the phenotypic data of the pedigree. This

method is useful for differentiating between different modes of inheritance (MOIs).

For example, one may use this method to determine whether a genetic trait follows

a dominant or recessive MOI. In the pedigree given in Figure 2, the likelihood

ratio of these two models is 105.17, assuming an allele prevalence of 0.1% and full

penetrance. This indicates that the trait is over 100,000 more likely to follow a

dominant than a recessive MOI.

Unlike differentiating recessive versus dominant models, differentiating a

model which assumes a genetic trait has been introduced by GM from a model

which assumes the converse via phenotypic data alone is a subtle and sometimes

infeasible task. As an example, consider again the pedigree shown in Figure 2. De-

note by M1 a model with a fully penetrant dominant MOI in which the trait has

been introduced into the pedigree from individual I-1 by inheritance, and denote

by M2 a model which assumes the same MOI and that the trait has been intro-

duced into the pedigree from individual I-1 by GM. Assuming a mutated germ cells

frequency of 50% for individual I-1, the likelihood ratio Pr (A |M1) / Pr(A |M2) is

1.19, indicating that the trait is equally likely to be introduced into the pedigree

by inheritance and by GM. More generally, the likelihood ratio of a model which

assumes a standard dominant MOI versus a model which assumes GM with a 50%

mutated germ cells frequency is approximately 0.5n/
(

0.25k ·0.75n−k
)

, where n de-

notes the number of children of the GM suspect and k denotes the number of such

children who are affected. Since human families are typically small, this ratio is not

informative enough to determine whether the studied trait is caused by GM.

The suggested resolution to the difficulty of identifying GM in pedigrees

is to use both the phenotypic and the genotypic data of a pedigree. One can then

possibly deduce that GM has occurred due to the irregular pattern of inheritance

that emerges when GM takes place; When the founder of a pedigree has GM, the

pedigree can be divided into two subpedigrees, where one subpedigree shows high

correlation between certain markers and the genetic trait, while the second subpedi-

gree does not. For example, in the pedigree shown in Figure 2, individuals II-1,

II-8 and their offspring show high correlation between the trait and the haplotype

shaded in gray. Other individuals in the pedigree do not show such a correlation.

This irregular pattern may indicate that GM has occurred. In this article we de-

velop a statistical test that incorporates the likelihood of both the phenotypic and

the genotypic data of a pedigree to identify GM.
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Table 1: The probability that GMs passes a mutated allele to a child

GMs paternal,

maternal alleles

w,w w,m m,w m,m

Standard Model
W = 0 S = 0 0 0 1 1

W = 0 S = 1 0 1 0 1

GM Model
W = 1 S = 0 β β 1 1

W = 1 S = 1 0 1 0 1

3 Statistical Formulation of GM

This section incorporates GM into the statistical model used for genetic linkage

analysis. It develops a likelihood ratio test for identifying occurrences of GM in a

pedigree and analyzes its statistical properties. The test is evaluated empirically via

simulations.

3.1 GM Statistical Model

The standard model described in Section 2.1 can be extended to account for GM.

Consider a genetic trait determined by a gene that has two alleles, where w denotes

a wildtype allele and m denotes a mutated allele. Further consider a pedigree with a

founder who may have GM at one of the two homologous chromosomes that carry

the trait locus. Denote this founder as GM suspect (GMs). To model GM in this

founder, we add a new random variable W and a new parameter β to the standard

model for genetic linkage analysis. The variable W is equal to either 0 or 1, where

W = 0 indicates that GMs does not have GM and W = 1 indicates that GMs has

GM. The probability Pr(W = 1) corresponds to the prior probability that GMs has

GM. The probability β that GMs will pass a mutated allele to a child is given by

β = Pr(G1 = m |W = 1,G2 = w, S = 0), where G1 denotes the allele that the child

received from GMs, G2 denotes the paternal allele of GMs and S = 0 indicates that

the child received the paternal allele of GMs. In other words, β is the probability

that GMs will pass a mutated allele instead of a wildtype allele to a child, given that

GM occurred and given that the paternal segment of the mutated chromosome is

passed. Table 1 shows the probability that GMs passes a mutated allele to a child,

given the trait alleles of GMs and given W and S . Rows in Table 1 show values of

W and of S , where S = 0 and S = 1 denote that the child receives the paternal and

maternal allele of GMs, respectively. For example, if W=1, S = 1 and GMs alleles
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Figure 3: An extended model representation of a family whose father may have

GM. The GM affects locus i but it does not affect locus i+1.

are w,m, then the probability that GMs passes a mutated allele to a child is 1. Note

that when β = 0 the two models are identical. An illustration of the extended model

is given in Figure 3. Assume that locus i is the trait locus. If W = 1, S i,c,p = 0 and

Gi,a,p = w, then Gi,c,p is equal to m with probability β and to w with probability

1− β. In any other case, the probability that Gi,c,p is equal to m is the same under

both the standard and the extended model. Namely, if W = 0 then Gi,c,p is equal to m

only if Gi,a,p =m and S i,c,p = 0 or if Gi,a,m =m and S i,c,p = 1. Consider Figure 2 for

an additional illustration. Individuals II-1, II-3, II-5 and II-8 received the paternal

haplotype of individual I-1 which contains the trait locus. A value of β= 0.5 reflects

good agreement with the data given W = 1, because two of these four individuals

have received a mutated allele while the other two have not. Individual II-10 cannot

receive a mutated allele, since under the model assumptions GM only occurs in the

paternal haplotype of individual I-1. Note that although a GM causing mutation can

also affect some of the somatic cells of GMs himself and alter his own phenotype,

the proposed model does not account for this rare event.

The variable W determines whether GM occurred, while the parameter β

is the conditional GM rate, given that GM occurred. The parameter β can also be
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described as the percentage of GMs germ cells in which the paternal trait chromo-

some is mutated, given that GM occurred. Assuming GMs is a founder, it makes no

difference if the mutation is placed at the paternal or maternal chromosome, since

the choice of which chromosome is the paternal one is arbitrary. Note that the stan-

dard model for genetic linkage analysis is equivalent to the extended model when

β = 0.

3.2 A Likelihood Ratio Test for Detecting GM

Consider a pedigree with a GM suspect (GMs) and denote by A the phenotypic data

of individuals in the pedigree. For every locus i, we define a likelihood ratio test to

determine whether GMs has GM given the phenotypic data A and the genotypic data

G of markers that surround locus i. The null hypothesis states that GMs does not

have GM while the alternative hypothesis states that GMs has GM. In other words,

the null hypothesis states that β= 0 while the alternative hypothesis states that β > 0.

We reject the null hypothesis of β= 0 if the phenotypic data A and the genotypic data

G provide significant evidence for GM. Denote by θ the recombination frequency

between locus i and the trait locus in the event of linkage. The likelihood ratio test

is given by

GM-LOD(A,G) , log

















Pr
(

A,G | β̂, θ̂
)

Pr
(

A,G |β0, θ̃
)

















(2)

where β0 denotes the assertion β = 0,
(

β̂, θ̂
)

= argmaxβ,θPr(A,G |β,θ) and θ̃ =

argmaxθPr(A,G |β0, θ) . The conditional recombination frequency θ is maximized

under both hypotheses, since it is treated as a nuisance parameter (Ott, 1999, p.

41). The prevalence and penetrance parameters are fixed to a predetermined value

under both hypotheses, as typically done in the standard LOD test. Thus, the GM-

LOD test has one degree of freedom. To avoid ambiguity, we refer to the likelihood

ratio test of linkage (Equation 1) as LOD and to the new test just described (Equa-

tion 2) as GM-LOD. The null hypothesis of no GM is rejected if the GM-LOD

statistic exceeds a predetermined cutoff value.

Denote by W0 and W1 the assertions W = 0 and W = 1, respectively, and

denote by ω the probability Pr(W1) . An equivalent form of the GM-LOD test is

given by

GM-LOD(A,G) , log

















(1−ω) ·Pr
(

A,G |β0, θ̂
)

+ω ·Pr
(

A,G |W1, β̂, θ̂
)

Pr
(

A,G |β0, θ̃
)

















. (3)
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Equations 2 and 3 are equivalent because Pr
(

A,G |W0, θ̂
)

= Pr
(

A,G |β0, θ̂
)

and

Pr
(

A,G | β̂, θ̂
)

= (1−ω) · Pr
(

A,G |W0, θ̂
)

+ ω · Pr
(

A,G |W1, β̂, θ̂
)

. The first of these

two equalities holds because the extended model is equivalent to the standard

model when either W = 0 or β = 0, as shown in Table 1. The second equal-

ity holds because W is by definition independent of the trait parameters β and θ,

and the parameter β does not affect the likelihood when W = 0 regardless of θ, as

shown in Table 1. The likelihoods in Equation 3 are computed via the equality

Pr(A,G |W,β,θ) = Pr(L) ·Pr(A,G |L,W,β,θ) + Pr(U) ·Pr(A,G |U,W,β), where L and

U denote linkage and non-linkage between the tested and trait locus. This equality

is derived under the assumption that the events L and U are independent of W and

β. Note that the parameter θ by definition only affects the likelihood in the event of

linkage. The prior probabilities Pr(L) and Pr(U) in the human genome correspond

to 0.02 and 0.98, respectively (Elston and Lange, 1975, Ott, 1999, p. 35).

3.3 Statistical Properties of the GM-LOD Statistic

As for all statistical tests, one must choose a cutoff value R such that the null

hypothesis of no GM is rejected if the GM-LOD score exceeds R. A cutoff that

yields a significance level of 5% is considered the right balance between statistical

power and false positive rate. We analytically derived the cutoff needed to obtain

a genomewide significance level of 5%. This was done by utilizing the results of

(Lander and Kruglyak, 1995) who analytically determined that a cutoff of 3.3 yields

a genomewide significance level of 5% for the standard LOD test. We related the

probability of obtaining a false positive result in a GM-LOD test to the probability

of obtaining a false positive result in a LOD test. From this relationship we derived

cutoff values that depend on pedigree properties.

The cutoff required to obtain a fixed genomewide significance level depends

on several pedigree properties. When GMs has a single spouse and both GMs and

the spouse of GMs are founders, this cutoff depends only on the number of GMs

children and the number of such children who are affected. Table 2 gives the cutoffs

required for obtaining a 5% genomewide significance level for a fully penetrant

trait in such a pedigree, when the allele prevalence and the prior probability of GM

are equal to 0.1% and when the affection status of GMs is unknown. The rows

correspond to the number of children GMs has, while the columns correspond to

the number of children who are affected. For example, when GMs has 4 children

and 2 of them are affected, Table 2 shows that the appropriate cutoff is 1.34. The

full analysis of the GM-LOD significance level is given in the Appendix.

One can also evaluate whether a genetic trait originated by GM via Bayesian

means. The posterior probability of GM, Pr
(

W = 1 |A,G, β̂, θ̂
)

, is the probability that
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Table 2: Cutoffs required to obtain a 5% GM-LOD genomewide significance level.

#GMs #GMs affected children

children 1 2 3 4 5 6 7 8 9 10

2 1.34 1.34

3 1.41 1.34 1.34

4 1.56 1.34 1.34 1.34

5 1.75 1.38 1.34 1.34 1.35

6 1.96 1.48 1.34 1.34 1.34 1.35

7 2.18 1.62 1.37 1.34 1.34 1.34 1.36

8 2.42 1.78 1.44 1.34 1.34 1.34 1.34 1.38

9 2.67 1.96 1.55 1.36 1.34 1.34 1.34 1.34 1.42

10 2.92 2.16 1.69 1.42 1.34 1.34 1.34 1.34 1.34 1.46
All values computed assuming full penetrance and that GMs has a single

unaffected spouse.

GMs has GM given the phenotypic data A and the genotypic data G of markers

that surround the tested locus. By using Bayes formula and some algebra, this

probability is bounded by

Pr
(

W = 1 |A,G, β̂, θ̂
)

≥ 1 − (1−ω) /10GM-LOD(A,G) (4)

where ω is the prior probability of GM, defined by ω = Pr(W = 1) . A GM-LOD

score greater than log[20(1−ω)] guarantees that the posterior probability of GM

is greater than 95%. Specifically, a GM-LOD score of log(20) ≈ 1.3 guarantees a

suitable posterior probability of GM regardless of the prior ω. This value reflects

good agreement with typical scenarios given in Table 2. The derivation of Equation

4 is as follows. Denote by W0 and W1 the assertions W = 0 and W = 1, respectively.

The following inequality holds:

Pr
(

W1 |A,G, β̂, θ̂
)

=
ω ·Pr

(

A,G |W1, β̂, θ̂
)

(1−ω) ·Pr
(

A,G |β0, θ̂
)

+ ω ·Pr
(

A,G |W1, β̂, θ̂
) (5a)

=

10GM-LOD(A,G)− (1−ω) ·
Pr
(

A,G |β0, θ̂
)

Pr
(

A,G |β0, θ̃
)

10GM-LOD(A,G)
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≥
10GM-LOD(A,G)− (1−ω)

10GM-LOD(A,G)
(5b)

=1− (1−ω) /10GM-LOD(A,G).

Equation 5a follows from Bayes rule. The derivation of the denominator in Equa-

tion 5a is similar to the derivation of the enumerator in Equation 3. Equation 5b

follows because θ̃ by definition maximizes the likelihood Pr(A,G |β0, θ) and thus

the ratio Pr
(

A,G |β0, θ̂
)

/Pr
(

A,G |β0, θ̃
)

is bounded by 1. The other equalities fol-

low by term rearrangements and by using the definition of GM-LOD(A,G) given in

Equation 3. In summary, Bayesian analysis justifies a cutoff of 1.3 for GM-LOD.

3.4 Evaluation of the Test

We evaluated the GM-LOD test empirically via simulations of random pedigrees

affected with a genetic trait. In some pedigrees the trait originated by GM and

in others it was inherited. We computed the GM-LOD score of each generated

pedigree and estimated the significance and power of the test. We also tested the

power of our model to identify linkage.

3.4.1 Tools and Methods

We generated 2000 random pedigree structures with up to five generations and up

to 40 individuals in each generation, where one of the individuals in generation I

has GM. For each pedigree structure, we generated two sets of random marker data

consisting of 8 SNPs 5 cM apart. The first set was generated using a fully pene-

trant dominant MOI and β = 0.5, and the second set was generated using a reduced

penetrance dominant MOI and β = 0. Thus, no pedigree displays full correlation

between the genotype and the phenotype. In all simulated pedigrees the affection

status of GMs was unknown. The trait prevalence and the prior probabilityω of GM

were both fixed at 0.1%. The penetrance parameter λ was the one that maximized

the likelihood of the phenotypic data under the standard model. The computations

were performed by representing the pedigree as a Bayesian Network (Jensen, 1996,

Pearl, 1988) similar to the one described in (Fishelson and Geiger, 2002) and ap-

plying an efficient sum of products algorithm.

3.4.2 Significance Evaluation

We evaluated the significance of GM-LOD under linkage to provide empirical sup-

port to our analytically computed cutoffs. Recall that in the event of linkage be-
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Figure 4: GM-LOD significance level

given a cutoff, when the tested and trait

locus are linked.
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Figure 5: GM-LOD power as a func-

tion of the number of GMs children and

the number of generations in the pedi-

gree

tween the trait and tested locus, a false positive result is obtained if the GM-LOD

score exceeds the cutoff but GMs does not have GM. We tested the false positive

rate of the GM-LOD test under this scenario. We examined both pedigrees in which

the trait originated by inheritance, and pedigrees in which the trait originated by

GM from an individual other than GMs. The results are shown in Figure 4, which

shows that a cutoff value as low as 0.2 yields a 5% false positive rate in the event

of linkage. Thus, the cutoffs in Table 2 guarantee a 5% significance level under

linkage. In the Appendix, it is shown analytically that these cutoffs also guarantee

a 5% genomewide significance level under non-linkage. Taken together, the sim-

ulations and the analytical results certify that the cutoffs in Table 2 provide a 5%

genomewide significance level.

3.4.3 Power Evaluation

We evaluated the power of the GM-LOD test by computing the percentage of pos-

itive results obtained when GMs has GM and the trait and tested locus are linked,

using a cutoff of 1.3. Figure 5 demonstrates that the power to detect GM grows

with the number of GMs children and with the number of tested generations. For 5

generations pedigrees, the power is greater than 50% when GMs has 5 children or

more.

3.4.4 Parameters Sensitivity

We tested the sensitivity of GM-LOD power to the ratio ω/γ, where ω is the prior

probability of GM and γ is the trait prevalence. Higher values of this ratio indicate
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Figure 7: GM-LOD power given a cut-

off when using phenotypic data only.

that a priori the trait is more likely to have originated by GM, while lower values

indicate it is more likely to be inherited. For each value of the ratio, an appropriate

cutoff can be computed. The power of the test is then evaluated via the percentage

of GM-LOD scores that exceed the cutoff when using this ratio. Figure 6 shows

that the power to detect GM is constant wrt to the ratio ω/γ. The GM-LOD test is

therefore robust with regards to this ratio.

3.4.5 Testing for GM Using Phenotypic Data Only

We tested whether GM can be identified using phenotypic data only. We used

a likelihood ratio test which is similar to the GM-LOD test, but uses phenotypic

data only. The test is given by log
[

(1−ω) + ω ·Pr
(

A |W1, β̂
)

/ Pr(A |β0)
]

, where β̂ =

argmaxβPr(A |W1,β). Figure 7 shows that this test has no power to detect GM with

a cutoff greater than 0.3. This confirms the argument in Section 2.4 that it is rarely

possible to detect GM by using phenotypic data alone.

3.4.6 Testing for Linkage

When one has rejected the null hypothesis of no GM, one should test for linkage

using a LOD test. A LOD test (Equation 1) should be taken after evidence for GM

is found, to directly test the hypothesis of linkage in the suspect region, with the

variable W set to 1 and the parameter β set to the maximum likelihood estimate.

We examined the power of our statistical model to identify linkage in the presence

of GM versus other methods.
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Figure 8: LOD power in the presence of GM, using different genetic models

We compare three different methods of testing for linkage when GM is

present. The first method computes the standard LOD test, using reduced pene-

trance. The second method performs an affected-only analysis by treating the phe-

notypic data of all unaffected individuals in the pedigree as unknown and computing

the standard LOD test. The third method computes a LOD score with the parameter

β which maximizes the likelihood and the variable W set to 1. All three methods

assume a mutated allele prevalence of 0.1% and a dominant MOI. The power of the

three methods to detect linkage is given in Figure 8, which shows that the power to

detect linkage is higher when our model is utilized. For a cutoff of LOD = 3.3, the

power is 20% higher than for the other methods.

4 A Case Study

We used the GM-LOD statistic to test for the occurrence of GM in a pedigree in

which GM has been hypothesized (Genzer-Nir et al., 2010). The pedigree, shown

in Figure 9, is affected with the MDN syndrome. Genzer-Nir et al. have found

evidence of linkage between a certain locus and this syndrome. Furthermore, they

observed that the pedigree can be divided into two sub-pedigrees, one of which

exhibits evidence of linkage while the second does not. This pattern is similar to

the one shown in Figure 2. Consequently, Genzer-Nir et al. hypothesized that

a mutated allele has been introduced into the pedigree by GM. We provide solid

statistical evidence for this hypothesis using the GM-LOD test.

4.1 Tools and Methods

In order to perform the GM-LOD test, we removed individuals who are not descen-

dants of the GM suspect and have no descendants in common with him from the
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Figure 9: The pedigree studied in Genzer-Nir et al. with affected individuals shaded

in black. A haplotype with five markers is shows for each individual, with the

marker names shows on the top left. Individuals with irrelevant haplotypes are de-

noted with Eu. The haplotype suspected of being linked to the trait is shaded in gray.

The ten unaffected individuals who carry the suspected haplotype are emphasized

as bold numbers. The image is adapted from Genzer-Nir et al.

original pedigree described in Genzer-Nir et al. We also removed the parents of the

GM suspect and his spouse. All these individuals are untyped and unaffected, and

thus their removal does not increases the likelihood of GM. The resulting pedigree

contains 52 individuals only, versus 84 individuals in the original pedigree, ren-

dering the GM-LOD computation less computationally demanding. The affection

status of the GM suspect was marked as unknown instead of unaffected to avoid

biasing the test in favor of GM.

We conducted a genomewide screen for GM by evaluating the GM-LOD

score at loci 10 cM apart, with a window of five adjacent markers for each multi-

point computation. We used a value of 0.1% mutated allele prevalence as in Genzer-

Nir et al. and a value of 0.1% for the prior probability ω of GM. Thus, the prior

probabilities that the mutated allele originated by GM and did not originate by GM

are equal. We used a fully penetrant dominant MOI, since this is the maximum like-

lihood estimate of the penetrance given the phenotypic data of the pedigree. The

stringent cutoff required to establish GM in the MDN pedigree is 1.40.
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stringent cutoff of 1.40.

4.2 Results

The GM-LOD values across all loci tested are given in Figure 10. The GM-LOD

values across chromosome 22q12.3-13.1 show significant evidence of GM. The

GM-LOD score across this chromosomal segment is 1.49. This value exceeds the

required cutoff of 1.40 and corresponds to a p-value of 0.034. In all other chromo-

somal segments, the GM-LOD value is close to zero. This supports the hypothesis

raised by Genzer-Nir et al. that the trait locus has been introduced into the pedigree

by GM and is located in chromosome 22q12.3-13.1.

After determining that the suspect region indeed shows evidence of GM,

we tested for linkage in this region using a LOD test (Equation 1) carried with the

extended statistical model. The variable W was set to 1, indicating that individual

I-1 has GM, and the parameter β was fixed at 0.61, which is the computed MLE

of β for this pedigree (this value of β reflects good agreement with the fact that

six out of the nine GMs children carrying the gray-shaded haplotype are affected,

assuming all affected children carry this haplotype). The cutoff required to establish

linkage with this LOD test is 3.3, the same as in the standard LOD test. The LOD

score across the suspect region is 3.76, indicating linkage. For comparison, we also

computed the LOD score obtained using the standard model (β = 0) and obtained

a maximal LOD score of -0.02 in the suspect region. Thus, the standard LOD test

fails to detect linkage in this region. No other region yields a significant LOD score,

as reported by Genzer-Nir et al. Note that since the GM-LOD score indicates that

there is GM only in one specific region, testing for linkage in other regions should

still be carried with the standard LOD test.
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5 Discussion

We developed a statistical test to determine whether a genetic trait has been intro-

duced into a pedigree by GM. We derived analytical cutoffs that guarantee a 5%

genomewide significance level for this test under non-linkage, and demonstrated

via simulations that these cutoffs guarantee a 5% significance level under linkage

as well. Thus, these cutoffs guarantee a 5% genomewide significance level. We fo-

cused on traits that follow a dominant mode of inheritance (MOI), since all known

genetic traits caused by GM that we are aware of follow this MOI (Zlotogora, 1998).

Nevertheless, our extended model can be used with any MOI. Existing software for

LOD score computation can easily be modified to compute GM-LOD scores, as

both tests compute similar likelihoods, with only a slight modification to the ge-

netic model.

The GM-LOD test is meant to be used when standard genetic linkage analy-

sis fails to detect linkage or provides inconclusive results. Parametric affected-only

(AF) analysis, where the affection status of unaffected individuals is regarded as

unknown, is an alternative method to detect linkage in such scenarios. This method

circumvents the difficulty of sib-pairs with different phenotypes who share the same

markers around the trait locus. Genzer-Nir et al. have shown that there is evidence

of linkage in the MDN pedigree by using this method. However, an AF analysis

disregards much of the pedigree data, and is thus less powerful than our method,

as shown in Section 3.4.6. One may also employ non-parametric linkage analysis

methods, which compute allele-sharing statistics between affected pairs in the pedi-

gree. (e.g. Kruglyak et al., 1996). We have not been able to test the power of these

methods to detect linkage in the presence of GM, since the pedigrees we analyzed

are too large for computer packages that perform non-parametric linkage analysis,

such as GENEHUNTER (Kruglyak et al., 1996), Merlin (Abecasis et al., 2002) and

Allegro (Gudbjartsson et al., 2005). Nevertheless, these methods are inevitably less

powerful than parametric methods that use an appropriate explicit model (Strauch

et al., 2000). Other non-parametric methods, which take non-affected individuals

into consideration (e.g. Blackwelder et al., 1985, Commenges, 1994, Green and

Montasser, 1988) are bound to run into the same difficulty of siblings with different

phenotypes who share the same markers around the trait locus.

Model selection tests may also be developed to detect other types of non-

standard inheritance patterns. For example, allelic and locus heterogeneity (Be-

nayoun et al., 2009), modifier genes (Dipple and McCabe, 2000) and uniparental

disomy (Kotzot, 2001) are biological phenomena that do not follow the assumptions

of classic genetic linkage analysis. As genotyping becomes widely affordable more

variates of non-standard genetic diseases will be discovered. Our work demon-

strates that adapting the genetic model is beneficial to deal with such unusual cases.
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Appendix

Statistical Properties of the GM-LOD Statistic

Here we derive the cutoff which guarantees a 5% significance level for the GM-

LOD statistic, as described in Section 3.3. Recall that the GM-LOD test is defined

by

GM-LOD(A,G) , log

















(1−ω) ·Pr
(

A,G |β0, θ̂
)

+ ω ·Pr
(

A,G |W1, β̂, θ̂
)

Pr
(

A,G |β0, θ̃
)

















. (A1)

The terms in Equation A1 have all been defined previously. In short, recall

that A and G are the phenotypic and the marker data of the pedigree, respec-

tively, W is an indicator for whether GMs has GM, β is the GM rate given that

W = 1, ω is the prior probability Pr(W = 1), θ is the recombination frequency be-

tween the trait and the tested locus in the event of linkage, β0 denotes the asser-

tion β = 0, θ̃ = argmaxθPr(A,G |β0, θ) and the parameters β̂ and θ̂ are defined as
(

β̂, θ̂
)

= argmaxβ,θPr(A,G |β,θ).

In the GM-LOD test, the null hypothesis H0 holds when β = 0 and its nega-

tion H1 holds when β > 0. We analyze the GM-LOD statistic by defining two al-

ternative hypotheses denoted by H∗
0

and H∗
1
. The hypothesis H∗

0
holds when either

β = 0 or the tested and trait locus are unlinked. The hypothesis H∗
1

holds when β > 0

and the two loci are linked. This definition encodes the fact that there is no power

to detect GM when the tested and trait locus and unlinked, since the genotypic data

used in the test is then independent of the trait and thus does not affect the likelihood

ratio. Because human families are typically small, there is no power to detect GM

by using phenotypic data alone. When conducting a genome-wide screen for GM,

and assuming that the trait originated by GM, the GM-LOD score is expected to ex-

ceed the cutoff only in the region that is linked to the trait. The subsequent analysis

determines the cutoff needed to ensure that the probability of falsely rejecting H∗
0

is smaller than 5%. This cutoff ensures a 5% probability of falsely rejecting H0 as

well, since when one rejects H∗
0

one also rejects H0.

The analysis of the significance level for the GM-LOD statistic is carried as

follows. In a genomewide screen, a GM-LOD test is performed for each locus. The

tested locus in each test can be either unlinked or linked to the trait locus. We first

derive a cutoff value which guarantees a false positive rate smaller than 5% for tests

performed on unlinked loci. In other words, we derive an upper bound on the cutoff

needed to obtain a 5% significance level in a screen performed on all regions that are

unlinked to the trait locus. Since the prior probability of non-linkage in the human
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genome is 98%, this significance level accounts for 98% of all tests performed in a

genomewide screen.

The upper bound on the cutoff is derived via the following inequality:

GM-LOD(A,G) ≤ log

[

(1−ω)+ω ·
Pr(L)
Pr(U)

·K ·10
LOD

(

A,G | β̂
)

+ω ·K

]

. (A2)

The quantities in Equation A2 are the following. The ratio Pr(L)/Pr(U) is the

prior probability of linkage versus no linkage. The term LOD
(

A,G | β̂
)

corre-

sponds to the standard LOD test carried using the extended model, with the vari-

able W = 1 and the parameter β which maximizes the likelihood Pr(A,G |W1,β). It

is defined by LOD
(

A,G | β̂
)

, log
[

Pr
(

A,G |L,W1, β̂, θ
∗
)

/Pr
(

A,G |U,W1, β̂
)]

, where

θ∗ is the maximum in the range [0,0.5). The term K denotes the likelihood ratio

Pr
(

A |W1, β̂
)

/Pr
(

A |β0

)

. It is bounded by

K ≤maxT



















Pr
(

AC ,T |W1, β̂
)

Pr
(

AC ,T |β0

)

∣

∣

∣

∣

∣

Pr(AS |T ) > 0



















. (A3)

In Equation A3, C is the set of individuals that consists of GMs and every other

parent of a child of GMs, and S is the set of individuals not in C who have a parent

in C or a child in C or a child with a parent in C. The variables AC and AS are

the phenotypic data of individuals in sets C and S , respectively. The variable T is

a consistent assignment of trait alleles to individuals in S , where each individual

receives zero, one or two mutated alleles. For example, in the pedigree given in

Figure 2, AC corresponds to the affection status of individuals I-1 and I-2, and

AS is the affection status of individuals in generation II. A consistent assignment

T for example is one mutated allele to individuals II-1 and II-8 and no mutated

alleles to individuals II-3, II-5 and II-10. Note that Equation A3 depends only on

the phenotypic data of individuals in sets C and S and on the set of consistent

assignments T . Therefore, Equation A3 provides a bound which holds for every

pedigree with the same values of AC and AS , regardless of the phenotypic data

of other individuals. The derivation of Equations A2 and A3 is given in the next

section.

Equation A2 shows that GM-LOD(A,G) is bounded by a monotone function

of LOD
(

A,G | β̂
)

. The test LOD
(

A,G | β̂
)

tests for linkage, and thus the probability of

it exceeding a given cutoff in the absence of linkage is bounded. Therefore, the false

positive rate of a GM-LOD test on an unlinked locus is related to the false positive

rate of a LOD test. The pointwise null distribution of the test LOD
(

A,G | β̂
)

is the

same as the pointwise null distribution of the standard LOD test, LOD(A,G |β0) ,

since maximizing the null and the alternative hypotheses of a likelihood ratio test
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over an additional parameter β does not affect the null distribution of the test. Thus,

the probability of exceeding a cutoff R in the standard LOD test given in (Lander and

Botstein, 1989, Lander and Kruglyak, 1995) also holds for the test LOD
(

A,G | β̂
)

.

We conclude that Equation A2 provides a bound on the probability of obtaining a

false positive result when the tested locus is unlinked to the trait locus, which covers

approximately 98% of all tests.

Equation A2 does not provide a sufficiently tight bound on loci linked to

the trait locus, because in the event of linkage, LOD
(

A,G | β̂
)

is not expected to be

low. The cutoffs computed with Equations A2 and A3 will continue to guarantee a

5% genomewide significance level, also in the case of linkage, if the false positive

rate is shown to be smaller under linkage than under non-linkage when using the

cutoff determined by Equation A2. This claim can be proved in the case where

all phases are known and the trait is fully penetrant, but a proof of the general

case remains an open mathematical problem. The justification for this claim is as

follows. Under non-linkage, the genotypic and the phenotypic data are independent,

and the genotypic data is thus not affected by the value of β. Consequently, the

distribution of the phenotypic and genotypic data is less sensitive to the value of

β under non-linkage, and thus the probability of obtaining a false positive result

is higher under non-linkage. We determined via simulations that when using the

cutoffs determined by Equations A2 and A3, the false positive rate in the event of

no GM and linkage is smaller than 5% as required.

Proofs of Inequalities

Propositions 1 and 2 prove Equations A2 and A3, respectively.

Proposition 1. Equation A2 holds.

Proof. Equation A2 is obtained via the following two inequalities:

Pr
(

A,G |β0, θ̂
)

Pr
(

A,G |β0, θ̃
) ≤ 1. (A4)

Pr
(

A,G |W1, β̂, θ̂
)

Pr
(

A,G |β0, θ̃
) ≤

Pr(L)

Pr(U)
·K ·10

LOD
(

A,G | β̂
)

+ K. (A5)

Equation A2 immediately follows by using Equations A4 and A5 on the definition

of GM-LOD(A,G) given in Equation A1. Equation A4 holds because θ̃ by definition
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maximizes the likelihood Pr(A,G |β0, θ). Equation A5 is derived as follows.

Pr
(

A,G |W1, β̂, θ̂
)

Pr
(

A,G |β0, θ̃
)

=
Pr(L) ·Pr

(

A,G |L,W1, β̂, θ̂
)

+ Pr(U) ·Pr
(

A,G |U,W1, β̂
)

Pr(L) ·Pr
(

A,G |L,β0, θ̃
)

+ Pr(U) ·Pr(A,G |U,β0)

≤
Pr(L) ·Pr

(

A,G |L,W1, β̂, θ̂
)

Pr(U) ·Pr(A,G |U,β0)
+

Pr(U) ·Pr
(

A,G |U,W1, β̂
)

Pr(U) ·Pr(A,G |U,β0)
(A6a)

=
Pr(L) ·Pr

(

A,G |L,W1, β̂, θ̂
)

Pr(U) ·Pr(G |U) ·Pr(A |U,β0)
+

Pr(U) ·Pr(G |U) ·Pr
(

A |U,W1, β̂
)

Pr(U) ·Pr(G |U) ·Pr(A |U,β0)
(A6b)

=
Pr(L) ·Pr

(

A,G |L,W1, β̂, θ̂
)

Pr(U) ·Pr(G) ·Pr(A |β0)
+

Pr(U) ·Pr(G) ·Pr
(

A |W1, β̂
)

Pr(U) ·Pr(G) ·Pr(A |β0)
(A6c)

=
Pr(L)

Pr(U)
·K ·

Pr
(

A,G |L,W1, β̂, θ̂
)

Pr(G) ·Pr
(

A |W1, β̂
) + K

=
Pr(L)

Pr(U)
·K ·

Pr
(

A,G |L,W1, β̂, θ̂
)

Pr
(

A,G |U,W1, β̂
) +K (A6d)

≤
Pr(L)

Pr(U)
·K ·

Pr
(

A,G |L,W1, β̂, θ
∗
)

Pr
(

A,G |U,W1, β̂
) + K (A6e)

=
Pr(L)

Pr(U)
·K ·10

LOD
(

A,G | β̂
)

+ K. (A6f)

Equation A6a is obtained by removing the first term from the denominator. Equa-

tion A6b follows because A and G are independent given the assertion U of non-

linkage regardless of other parameters, and G is independent of β when A is not

given. Equation A6c follows because the likelihood of A is unaffected by U when

G is not given and vice versa. Equation A6d follows because A and G are in-

dependent given U, regardless of W and β. Equation A6e follows because θ∗ by

definition maximizes the likelihood Pr
(

A,G |L,W1, β̂, θ
)

. Finally, Equation A6f is
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obtained by using the definition of LOD
(

A,G | β̂
)

. The other equalities are term re-

arrangements. �

Proposition 2. Equation A3 holds.

Proof. We split the individuals in the pedigree into three sets denoted by C, S and

R. Recall that C contains GMs and every other parent of a child of GMs and that S

contains individuals not in C who have a parent in C or a child in C or a child with

a parent in C, and define R as the set containing the rest of the individuals. Further

recall that AC and AS denote the phenotypic data of individuals in sets C and S ,

respectively, and denote AR as the phenotypic data of individuals in set R. Finally,

recall that T corresponds to an assignment of trait alleles to individuals in S and

define M by M =maxT

{

Pr
(

AC ,T |W1, β̂
)

/Pr
(

AC ,T |β0

)

∣

∣

∣

∣

∣

Pr(AS |T ) > 0

}

.

The term K is bounded by M as follows.

K ,
Pr
(

A |W1, β̂
)

Pr(A |β0)
=

Pr
(

AC ,AS ,AR |W1, β̂
)

Pr(AC ,AS ,AR |β0)
(A7a)

=

∑

T Pr
(

AC ,T |W1, β̂
)

· Pr(AS |T ) · Pr(AR |T,AS )
∑

T Pr(AC ,T |β0) · Pr(AS |T ) · Pr(AR |T,AS )
(A7b)

≤

∑

T

[

M ·Pr(AC ,T |β0)
]

·Pr(AS |T ) ·Pr(AR |T,AS )
∑

T Pr(AC ,T |β0) ·Pr(AS |T ) ·Pr(AR |T,AS )
= M. (A7c)

Equation A7a follows because the phenotypic data A is composed of AC , AS and

AR. Equation A7c follows according to the definition of M. Equation A7b, which

is the essence of the proof, follows because Pr(AS |T ) = Pr
(

AS |T,AC ,W1, β̂
)

and

Pr(AR |T,AS ) = Pr
(

AR |T,AS ,AC ,W1, β̂
)

. In other words, given the genotypic trait

data T , the probability of the phenotypic data AS and AR is unaffected by the quan-

tities AC , W and β. The direct proof shows that the probability of AS and AR given

a specific value of T is constant for every given combination of AC , W and β. This

claim can also be proved in a Bayesian networks terminology via the definition of

d-separation (Pearl, 1988). �
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