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Abstraet. We describe a Bayesian approach for learning Bayesian networks from a combination of prior 
knowledge and statistical data. First and foremost, we develop a methodology for assessing informative priors 
needed for learning. Our approach is derived from a set of assumptions made previously as weil as the 
assumption of likelihood equivalence, which says that data should not help to discriminate network stmctures 
that represent the same assertions of conditional independence. We show that likelihood equivalence when 
combined with previously made assumptions implies that the nser's priors for network parameters can be 
encoded in a single Bayesian network for the next case to be seen--a prior network and a single measure 
of confidence for that network. Second, using these priors, we show how to compute the relative posterior 
probabilities of network structures given data. Third, we describe search methods for identifying network 
structures with high posterior probabilities. We describe polynomial algorithms for finding the highest-scoring 
network stmctures in the special case where every node has at most k = 1 parent. For the general case 
(k > 1), which is Np-hard, we review heuristic search algorithms including local search, iterative local 
search, and simulated annealing. Finally, we describe a methodology for evaluating Bayesian-network learning 
algorithms, and apply this approach to a comparison of various approaches. 
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1. I n t r o d u c t i o n  

A Bayesian ne twork  is an annotated directed graph that encodes probabil is t ic  relat ionships 

among  distinctions of  interest in an uncer ta in-reasoning prob lem (Howard & Matheson,  

1981; Pearl, 1988). The  representat ion formal ly  encodes  the jo in t  probabil i ty distribu- 

tion for its domain,  yet includes a human-or iented  qual i ta t ive structure that facilitates 

communica t ion  be tween  a u s e r  and a system incorporat ing the probabil is t ic  model .  We 

discuss the representation in detail in Sect ion 2. For  over  a decade,  AI  researchers  have 

used Bayesian networks to encode  exper t  knowledge .  M o r e  recently, AI  researchers  and 

statisticians have  begun to invest igate  methods  for learning Bayesian networks,  including 

Bayesian methods  (Cooper  & Herskovi ts ,  1991; Buntine,  1991; Spiegelhal ter  et al., 1993; 

Dawid  & Lauri tzen,  1993; Hecke rman  et al., 1994), quas i -Bayesian methods  (Lam & 
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Bacchus, 1993; Suzuki, 1993), and nonBayesian methods (Pearl & Verma, 1991; Spirtes 
et al., 1993). 

In this paper, we concentrate on the Bayesian approach, which takes prior knowledge 
and combines it with data to produce one or more Bayesian networks. Our approach is il- 
lustrated in Figure 1 for the problem of ICU ventilator management. Using our method, a 
user specifies his prior knowledge about the problem by constructing a Bayesian network, 
called a prior network, and by assessing his confidence in this network. A hypothetical 
prior network is shown in Figure lb (the probabilities are not shown). In addition, a 
database of cases is assembled as shown in Figure lc. Each case in the database contains 
observations for every variable in the user's prior network• Our approach then takes these 
sources of information and learns one (or more) new Bayesian networks as shown in 
Figure ld. To appreciate the effectiveness of the approach, note that the database was 
generated from the Bayesian network in Figure la  known as the Alarm network (Beinlich 
et al., 1989). Comparing the three network structures, we see that the structure of the 
learned network is much closer to that of the Alarm network than is the structure of the 
prior network. In effect, our learning algorithm has used the database to "correct" the 
prior knowledge of the user. 

Our Bayesian approach can be understood as follows. Suppose we have a domain of 
discrete variables { z l , . . . ,  zn} = U, and a database of cases {C1 , . . . ,  C~}  = D. Fur- 
ther, suppose that we wish to determine the joint distribution p(CID, {)-- the  probability 
distribution of a new case C, given the database and our current state of information 
{. Rather than reason about this distribution directly, we imagine that the data is a ran- 
dom sample from an unknown Bayesian network structure B~ with unknown parameters. 
Using/38 h to denote the hypothesis that the data is generated by network structure /3s, 
and assuming the hypotheses corresponding to all possible network structures form a 
mutually exclusive and collectively exhaustive set, we have 

p(C[D,{)= ~_, p(CID, B),[).p(Bh[D,{) 
all B h 

In practice, it is impossible to sum over all possible network structures. Consequently, 
we attempt to identify a small subset H of network-structure hypotheses that account for 
a large fraction of the posterior probability of the hypotheses. Rewriting the previous 
equation, we obtain 

p(glD,{) ~ c ~ p(CID, B),{ ) .p(B)ID,{ ) 
B)cH 

where c is the normalization constant 1/[£SheHp(B•lD,{)]. From this relation, we 
see that only the relative posterior probabilitie~s of hypotheses matter. Thus, rather than 
compute a posterior probability, which would entail summing over all structures, we can 
compute a Bayes'factor--p(B}lD, {)/p(B£ [D, {)--where B~0 is some reference struc- 
ture such as the one containing no arcs, or simply p(D, B~[{) = p(B}l{) p(DtB~, {). 
In the latter case, we have 

• B s  I{) (1) p(C[D,[) ~ c' ~ ,  p(CIn, B),{) p(n, h 
B)cH 
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Figure 1. (a) The Ala rm ne twork  structure. (b) A prior  ne twork  encod ing  a user 's  beliefs about  the Ala rm 
domain.  (c) A 10,000-case database  generated f rom the Ala rm network.  (d) The ne twork  learned f rom the 
prior ne twork  and a 10,000 case database  generated f rom the Ala rm network.  Arcs  that are added,  deleted, or 
reversed with resDect to the Ala rm network  are indicated with A, D, and R, respectively. 
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where c' is another normalization constant 1/[~Æ) eH p(D, B~ ]«)l- 

In short, the Bayesian approach to learning Bayesian networks amounts to searching 
for network-structure hypotheses with high relative posterior probabilities. Many non- 
Bayesian approaches use the same basic approach, but optimize some other measure of 
how well the structure fits the data. In general, we refer to such measures as scoring 
metrics. We refer to any formula for computing the relative posterior probability of a 
network-structure hypothesis as a Bayesian scoring metric. 

The Bayesian äpproach is not only an approximation for p(C]D, ~) but a method for 
learning network structure. When IHI = 1, we learn a single network structure: the 
MAP (maximum a posteriori) structure of U. When IHI > 1, we learn a collection of 
network structures. As we discuss in Section 4, learning network structure is useful, 
because we can sometimes use structure to infer causal relationships in a domain, and 
consequently predict the effects of interventions. 

One of the most challenging tasks in designing a Bayesian learning procedure is iden- 
tifying classes of easy-to-assess informative priors for computing the terms on the right- 
hand-side of Equation 1. In the first part of the paper (Sections 3 through 6), we explicate 
a set of assumptions for discrete networks--networks containing only discrete variables-- 
that leads to such a class of informative priors. Our assumptions are based on those made 
by Cooper and Herskovits (1991, 1992)--herein referred to as CH--Spiegelhalter et al. 
(1993) and Dawid and Lauritzen (1993)--herein referred to as SDLC--and Buntine 
(1991). These researchers assumed parameter independence, which says that the pa- 
rameters associated with each node in a Bayesian network are independent, parameter 
modularity, which says that if a node has the same parents in two distinct networks, then 
the probability density functions of the parameters associated with this node are identical 
in both networks, and the Dirichlet assumption, which says that all network parame- 
ters have a Dirichlet distribution. We assume parameter independence and parameter 
modularity, but instead of adopting the Dirichlet assumption, we introduce an assump- 
tion called likelihood equivalence, which says that data should not help to discriminate 
network structures that represent the same assertions of conditional independence. We 
argue that this property is necessary when learning acausal Bayesian networks and is 
offen reasonable when learning causal Bayesian networks. We then show that likelihood 
equivalence, when combined with parameter independence and several weak conditions, 
implies the Dirichlet assumption. Furthermore, we show that likelihood equivalence 
constrains the Dirichlet distributions in such a way that they may be obtained from the 
user's prio r network--a Bayesian network for the next case to be seen--and a single 
equivalent sample size reflecting the user's confidence in his prior network. 

Our result has both a positive and negative aspect. On the positive side, we show 
that parameter independence, parameter modularity, and likelihood equivalence lead to a 
simple approach for assessing priors that requires the user to assess only one equivalent 
sample size for the entire domain. On the negative side, the approach is sometimes too 
simple: a user may have more knowledge about orte part of a domain than another. We 
argue that the assumptions of parameter independence and likelihood equivalence are 
sometimes too strong, and suggest a framework for relaxing these assumptions. 
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A more straightforward task in learning Bayesian networks is using a given informative 
prior to compute p(D, Bhsl~) (i.e., a Bayesian scoring metric) and p(CID , Bh, ~). When 
databases are complete--that  is, when there is no missing data--these terms can be 
derived in closed form. Otherwise, well-known statistical approximations may be used. 
In this paper, we consider complete databases only, and derive closed-form expressions 
for these terms. A result is a likelihood-equivalent Bayesian scoring metric, which we 
call the BDe metric. This metric is to be contrasted with the metrics of  CH and Buntine 
which do not make use of a prior network, and to the metrics of  CH and SDLC which 
do not satisfy the property of likelihood equivalence. 

In the second part of  the paper (Section 7), we examine methods for finding networks 
with high scores. The methods can be used with many Bayesian and nonBayesian scoring 
metrics. We describe polynomial algofithms for finding the highest-scoring networks in 
the special case where every node has at most one parent. In addition, we describe local- 
search and annealing algorithms for the general case, which is known to be NP-hard. 

Finally, in Sections 8 and 9, we describe a methodology for evaluating learning algo- 
rithms. We use this methodology to compare various scoring metrics and search methods. 

We note that several researchers (e.g., Dawid & Lauritzen, 1993; Madigan & Raftery, 
1994) have developed methods for learning undirected network structures as described 
in (e.g.) Lauritzen (1982). In this paper, we concentrate on learning directed models, 
because we can sometimes use them to infer causal relationships, and because most users 
find them easier to interpret. 

2. Background 

In this section, we introduce notation and background material that we need for our 
discussion, including a description of  Bayesian networks, exchangeability, multinomial 
sampling, and the Dirichlet distribution. A summary of  out notation is given after the 
Appendix on page 240. 

Throughout this discussion, we consider a domain U of n discrete variables x l , - . . ,  xn. 
We use lower-case letters to refer to variables and upper-case letters to refer to sets of 
variables. We write xi = k to denote that variable xi is in state k. When we observe the 
state for every variable in set X ,  we call this set of observations a state of X;  and we 
write X = kx  as a shorthand for the observations x~ = ki, xi E X .  The joint space of 
U is the set of all states of U. We use p ( X  = k x [ Y  = ky,  ~) to denote the probability 
that X = kx  given Y - ky  for a person with current state of information (. We use 
p(XIY,  ~) to denote the set of  probabilities for all possible observations of X,  given all 
possible observations of  Y. The joint probability distribution over U is the probability 
distribution over the joint space of U. 

A Bayesian network for domain U represents a joint probability distribution over U. 
The representation consists of a set of  local conditional distributions combined with a set 
of conditional independence assertions that allow us to construct a global joint probability 
distribution from the local distributions. In particular, by the chain rule of  probability, 
we have 
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p(x~ = present,~) = 0.6 

p(x 2 = presentlx~ = present,~) = 0.8 

p(x 2 = presentlx~ = absent,~) = 0.3 

p ( x  3 = presentlx~ = present,~) = 0.9 

p(x 3 = presentlx 2 =absent,{) = 0.15 

Figure 2. A Bayesian network for three binary variables (taken from CH). The network represents the assertion 
that x l  and x3 are conditionally independent given x2. Each variable has states "absent" and "present." 

p(x , ,  .., x~l«) = f I  p(~d~l, . . . ,  ~~-1, «) 
i=1 

(2) 

For each variable xi ,  let I I i  C { x l , . . . ,  x i - 1 }  be a set of variables that renders xi  and 
{Xl, •. •, x i -  1} conditionally independent. That is, 

p ( x d x x , . . . ,  m~-l, «) = p(xilIIi,  ~) (3) 

A Bayesian-network structure Bs encodes the assertions of conditional independence in 
Equations 3. Namely, Bs is a directed acyclic graph such that (1) each variable in U 
corresponds to a node in Bs,  and (2) the parents of the node corresponding to xi are the 
nodes corresponding to the variables in rIi .  (In this paper, we use xi to refer to both 
the variable and its corresponding node in a graph.) A Bayesian-network probability set 
Bp is the collection of  local distributions p(xilIIi, ~) for each node in the domain. A 
Bayesian network for U is the pair (Bs, Bp). Combining Equations 2 and 3, we see that 
any Bayesian network for U uniquely determines a joint  probabili ty distribution for U. 

That is, 

7~ 

p ( x l ,  . . . , x ~ l « )  : I I  p ( x i l n ~ ,  «)  
i = l  

(4) 

When a variable has only two states, we say that it is binary. A Bayesian network 
for three binary variables x l , x z ,  and x3 is shown in Figure 2. We see that II1 = 
13, IIz = {Xl}, and 173 = {x2}. Consequently, this network represents the conditional- 

independence assertion p( x3 Ixl, x2, ~) = p(x3 Ix2, ~). 
It can happen that two Bayesian-network structures represent the same constraints of 

conditional independence-- that  is, every joint  probabili ty distl ation encoded by one 
structure can be encoded by the other, and vice versa. In this case, the two network 
structures are said to be equivalent (Verma & Pearl, 1990). For example, the structures 
x l  --+ :c2 ~ :ca and Xl e - -  X 2 +--  X3 both represent the assertion that Xl and x3 are con- 
ditionally independent given x2, and are equivalent, In some of the technical discussions 
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in this paper, we shall require the following characterization of equivalent networks, 
proved in Chickering (1995a) and also in the Appendix. 

THEOREM 1 (Chickering, 1995a) Let Bsl and Bs2 be two Bayesian-network structures, 
and RBsl,B~2 be the set of edges by which Bs1 and Bs2 differ in directionality. Then, 
Bs1 and Bs2 are equivalent if and only if there exists a sequence of IRBsI,B~2 I distinct 
arc reversals appIied to t3~1 with the foIlowing properties: 

1. After each reversal, the resulting network structure contains no directed cycles and 
is equivalent to Bs2 

2. After all reversals, the resulting network structure is identical to Bs2 

3. I f  z ---+ y is the next arc to be reversed in the current network structure, then z and 
y have the same parents in both network structures, with the exception that z is also 
a parent o f y  in Bs1 

A drawback of Bayesian networks as defined is that network structure depends on 
variable order. If the order is chosen carelessly, the resulting network structure may 
fail to reveal many conditional independencies in the domain. Fortunately, in practice, 
Bayesian networks are typically constructed using notions of cause and effect. Loosely 
speaking, to construct a Bayesian network for a given set of variables, we draw arcs from 
cause variables to their immediate effects. For example, we would obtain the network 
structure in Figure 2 if we believed that x2 is the immediate causal effect of Xl and x3 is 
the immediate causal effect of x »  In almost all cases, constructing a Bayesian network 
in this way yields a Bayesian network that is consistent with the formal definition. In 
Section 4 we return to this issue. 

Now, let us consider exchangeability and random sampling. Most of the concepts we 
discuss can be found in Good (1965) and DeGroot (1970). Given a discrete variable 
y with r states, consider a finite sequence of observations Yl, • •. ,  Ym of this variable. 
We can think of this sequence as a database D for the one-variable domain U = {y}. 
This sequence is said to be exchangeable if a sequence obtained by interchanging any 
two observations in the sequence has the same probability as the original sequence. 
Roughly speaking, the assumption that a sequence is exchangeable is an assertion that 
the process(es) generating the data do not change in time. 

Given an exchangeable sequence, De Finetti (1937) showed that there exists parameters 
Oy = {0~=l , . . . , 0y=r}  such that 

Oy=k > 0 ,  k = l , . . . , r ,  •2• 0v=  Æ = 1 

k=l 

(5) 

P(Yz = k [ y l , . . . ,  Yl--1, Oy, ~) = Oy=k (6) 

That is, the parameters (gy render the individual observations in the sequence condi- 
tionally independent, and the probability that any given observation will be in state k is 
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Figure 3. A Bayesian network showing the conditional-independence assertions associated with a multinomial 
sample. 

just 0y=k. The conditional independence assertion (Equation 6) may be represented as 
a Bayesian network, as shown in Figure 3. By the strong law of large numbers (e.g., 
DeGroot, 1970, p. 203), we may think of Oy=k as the long-run fraction of observations 
where y = k, although there are  other interpretations (Howard, 1988). Also note that 
each parameter Ov=k is positive (i.e., greater than zero). 

A sequence that satisfies these conditions is a particular type of random sample known 
as an (r - 1)-dimensional multinomial sample with parameters (~y (Good, 1965). When 
r = 2, the sequence is said to be a binomial sample. One example of a binomial sample 
is the outcome of repeated flips of  a thumbtack. If  we knew the long-run fraction of 
"heads" (point down) for a given thumbtack, then the outcome of each flip would be 
independent of the rest, and would have a probability of  heads equal to this fraction. An 
example of a multinomial sample is the outcome of  repeated rolls of a multi-sided die. 
As we shall see, learning Bayesian networks for discrete domains essentially reduces to 
the problem of learning the parameters of a die having many sides. 

As by  is a set of continuous variables, it has a probability density, which we denote 
P((~yI~). Throughout this paper, we use P('I~) to denote a probability density for a 
continuous variable or set of continuous variables. Given p(O v I~), we can determine the 
probability that y = k in the next observation. In particular, by the rules of  probability 
we have 

p(y = kl~ ) = / p(y = klOy,~) p(Ovt~) dOy 

Consequently, by condition 3 above, we obtain 

p(y = kl~) = f 0~=k p(%l~) de~ (7) 

which is the mean or expectation of  Ov=k with respect to p(Ou]~), denoted E(Oy=kl~). 
Suppose we have a prior density for Or, and then observe a database D. We may 

obtain the posterior density for Ov as follows. From Bayes' rule, we have 

p(eylD,  ~) = ~. p (D l%,~ )  p(eyl~) 
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where c is a normalization constant. Using Equation 6 to rewrite the first term on the 
right hand side, we obtain 

ùo(e~,lD, « )=  c. [ I  O~:Æ ,o(~)~,1[ ) 
k = l  

(8) 

where Nk is the number of  times x = k in D. Note that only the counts N 1 , . . . ,  N~ 
are necessary to determine the posterior from the prior. These counts are said to be a 
sufficient statistic for the multinomial sample. 

In addition, suppose we assess a density for two different states of information ~1 and 
~2 and find that p(ey[~l)  = p(Oyl~2). Then, for any multinomial sample D, 

p (D I« I )  = IP(Dl%, «~) ,o(evK1) dOy = p(D/«2) (9) 

because p(Dlev, ~1) : P(DtOy, «2) by Equation 6. That is, if the densities for Oy are 
the same, then the probability of  any two samples will be the same. The converse is also 
true. Namely, if p(Dl~l  ) = p(Dl~2 ) for all databases D, then p(Oyl~a ) = p(~y]~2). 1 
We shall use this equivalence when we discuss likelihood equivalence. 

Given a multinomial sample, a u s e r  is free to assess any probability density for Oy. 
In practice, however, one often uses the Dirichlet distribution because it has several 
convenient properties. The parameters Oy have a Dirichlet distribution with exponents 
AT{, . . ,  N r when the probability density of  ~y  is given by 

F(F 1 N £ ) r  1-~ AN~-I t p(Oyl~) = > 0  
k=l k=l 

(10) 

where F(.) is the Gamma function, which satisfies F ( x + I )  = x t ( z )  and F(1) = 1. When 
the parameters O v have a Dirichlet distribution, we also say that p(O v 1~) is Dirichlet. The 
requirement that N£ be greater than 0 guarantees that the distribution can be normalized. 
Note that the exponents ]'7£ a r e a  function of  the user's stare of  information ~. Also 
note that, by Equation 5, the Dirichlet distribution for @y is technically a density over 
O v \ {0y=k}, for some k (the symbol \ denotes set difference). Nonetheless, we shall 
write Equation 10 as shown. When r = 2, the Dirichlet distribution is also known as a 
beta distribution. 

/,From Equation 8, we see that if the prior distribution of IDy is Dirichlet, then the 
posterior distribution of Oy given database D is also Dirichlet: 

• I  oNk+Nk -1  ! 
» ( % I D , ~ )  = ~ ~=~ , eV~ > 0 

k=l 
(11) 

where c is a normalization constant. We say that the Dirichlet distribution is closed 
under multinomial sampling, or that the Dirichlet distribution is a conjugate family of 
distributions for multinomial sampling. Also, when @v has a Dirichlet distribution, the 
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expectation of  Oy=k~----equal to the probability that x = ki in the next observation--has 
a simple expression: 

N£ 
E(Oy=kl«) : p(y = klO) - N '  (12) 

7' 
where N r = Y'~~k=l N£. We shall make use of these properties in our derivations. 

A survey of methods for assessing a beta distribution is given by Winkler (1967). 
These methods include the direct assessment of  the probability density using questions 
regarding relative densities and relative areas, assessment of the cumulative distribution 
function using fractiles, assessing the posterior means of the distribution given hypothet- 
ical evidence, and assessment in the form of an equivalent sample size. These methods 
can be generalized with varying difficulty to the nonbinary case. 

In our work, we find one method based on Equation 12 particularly useful. The equation 
says that we can assess a Dirichlet distribution by assessing the probability distribution 
p(y[~) for the next observation, and N r. In so doing, we may rewrite Equation 10 as 

p ( O v l ~  ) = c. f I  ON'P(V=kl«)-ly=k 
k = l  

(13)  

where c is a normalization constant. Assessing P(Yl«) is straightforward. Furthermore, 
the following two observations suggest a simple method for assessing N/.  

One, the variance of a density for O v is an indication of  how much the mean of O v 
is expected to change, given new observations. The higher the variance, the greater 
the expected change. It is sometimes said that the variance is a measure of  a user's 
confidence in the mean for O~. The variance of the Dirichlet distribution is given by 

Var(Ou=kl« ) = P(Y = klO)( 1 -- P(Y ---- Æ[~)) (14) 
N r + l  

Thus, N r is a reflection of the user's confidence. Two, suppose we were initially com- 
pletely ignorant about a domain--that  is, our distribution p(Ovl~) was given by Equa- 
tion 10 with each exponent N£ = 0. 2 Suppose we then saw N ~ cases with sufficient 
statistics N ~ , . . ,  N~. Then, by Equation 11, our prior would be the Dirichlet distribu- 
tion given by Equation 10. 

Thus, we can assess N r as an equivalent sample size: the number of  observations we 
would have had to have seen starting from complete ignorance in order to have the same 
confidence in O v that we actually have. This assessment approach generalizes easily to 
many-variable domains, and thus is useful for out work. We note that some users at 
first find judgments of equivalent sample size to be difficult. Our experience with such 
users has been that they may be made more comfortable with the method by first using 
some other method for assessment (e.g., fractiles) on simple scenarios and by examining 
equivalent sample sizes implied by their assessments. 
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3. Bayesian Metrics: Previous Work 

CH, Buntine, and SDLC examine domains where all variables are discrete and derive 
essentially the same Bayesian scoring metric and formula for p(CID, Bh~, ~) based on 
the same set of  assumptions about the user's prior knowledge and the database. In 
this section, we present these assumptions and provide a derivation of  p(D, Bh]()  and 

p(ClD, Bh, ~). 
Roughly speaking, the first assumption is that B h is true iff the database D can be 

partitioned into a set of  multinomial samples determined by the network structure Bs. 
In particular, B h is true iff, for every variable xi in U and every stare of  xi ' s  parents 
Hi in Bs, the observations of xi in D in those cases where [Ii takes on the same stare 
constitute a multinomial sample. For example, consider a domain consisting of  two 
binary variables x and y. (We shall use this domain to illustrate many of  the concepts 
in this paper.) There are three network structures for this domain: x --+ y, x +-- g, 
and the empty network structure containing no arc. The hypothesis associated with the 
empty network structure, denoted B~hy, corresponds to the assertion that the database is 
made up of  two binomial samples: (1) the observations of x a r ea  binomial sample with 
parameter Ox, and (2) the observations of y are a binomial sample with parameter 0 v. 

In contrast, the hypothesis associated with the network structure x --+ y, denoted B h x~y, 
corresponds to the assertion that the database is made up of  at most three binomial 
samples: (1) the observations of  x are a binomial sample with parameter 0x, (2) the 
observations of g in those cases where x is true (if any) a r e a  binomial sample with 
parameter Ovl ~, and (3) the observations of y in those cases where x is false (if any) 
a r e a  binomial sample with parameter 0yl~. One consequence of  the second and third 
assertions is that y in case C is conditionally independent of  the other occurrences of  y 
in D, given Ovl ~, 0yl~, and x in case C. We can graphically represent this conditional- 
independence assertion using a Bayesian-network structure as shown in Figure 4a. 

h Finally, the hypothesis associated with the network structure x +-- •, denoted B x ~  v, 
corresponds to the assertion that the database is made up of  at most three binomial 
samples: one for y, one for x given y is true, and one for x given y is false. 

Before we state this assumption for arbitrary domains, we introduce the following 
notation. 3 Given a Bayesian network Bs for domain U, ler r~ be the number of  states 
of variable z~; and let qi = I~x~crI~ rl be the number of states of  II~. We use the 
integer j to index the stares of  1-Il. Thus, we write p(xi = k[II~ = j ,~)  to denote the 
probability that xi = k, given the j th  state of the parents of  xi. Let Oijk denote the 
multinomial parameter corresponding to the probability p(x~ = k[Hi = j, ~) (Oijk > O, 

r i  ~ k = l  Oijk = 1). In addition, we define 

e i j  - U~Ll{Oijk } 

e~ - u~ ~ l { e u }  
3 =  
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~ case 1 case 1 

case 2 case 2 

(a) (b) 

Figure 4. A Bayesian-network structure for a two-binary-variable domain {x, y} showing conditional inde- 
pendencies associated with (a) the multinomial-sample assumption, and (b) the added assumption of parameter 
independence. In both figures, it is assumed that the network structure x ---+ g is generating the database. 

That is, the parameters in OB~ correspond to the probability set Bp for a single-case 
Bayesian network. 

ASSUMPTION 1 (MULTINOMIAL SAMPLE) Given domain U and database D, let D~ 
denote the first l - 1 cases in the database. In addition, let zit and II~l denote the 
variable xi and the parent set II~ in the lth case, respectively. Then, for all network 
structures Bs in U, there exist positive parameters (~Bs such that, for i = 1 , . . . ,  n, and 
for all k, k l , . . . ,  ki-1, 

p(xit = klxlz = k l , . . - ,  x(i-1)z = ki-1, D1, (gB~, B~ h, ~) -- Oijk (15) 

where j is the state of Hiz consistent with {xlt = k l , . . . ,  x(i-t)z = ki-1}. 

There is an important implication of  this assumption, which we examine in Section 4. 
Nonetheless, Equation 15 is all that we need (and all that CH, Buntine, and SDLC used) to 
derive a metric. Also, note that the positivity requirement excludes logical relationships 
among variables. We can relax this requirement, although we do not do so in this paper. 

The second assumption is an independence assumption. 

ASSUMPTION 2 (PARAMETER INDEPENDENCE) Given network structure B~, 
if p(B)[~) > O, then 

a. p((3B~lBhs, ~) = I~in=l p(Oil j~hs ,  ~) 

b. For i ~- 1 , . .  . ,n." p((~ilJ~hs, ~) = l~j:lqi P((~i j  [Bhs, ~) 

Assumption 2a says that the parameters associated with each variable in a network 
structure are independent. We call this assumption global parameter independence after 
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Spiegelhalter and Lauritzen (1990). Assumption 2b says that the parameters associated 
with each state of the parents of a variable are independent. We call this assumption 
local parameter independence, again after Spiegelhalter and Lauritzen. We refer to the 
combination of these assumptions simply as parameter independence. The assumption of 
parameter independence for our two-binary-variable domain is shown in the Bayesian- 
network structure of Figure 4b. 

As we shall see, Assumption 2 greatly simplifies the computation of p(D, B)I~). The 
assumption is reasonable for some domains, but not for others. In Section 5.6, we 
describe a simple characterization of the assumption that provides a test for deciding 
whether the assumption is reasonable in a given domain. 

The third assumption was also made to simplify computations. 

ASSUMPTION 3 (PARAMETER MODULARITY) Given two network structures B s l  and 
Bs2 such that p(B)ll~ ) > 0 and P(B~21~) > O, if x~ has the same parents in Bsl and 
Bs2, then 

B h P(O~jIBh»«) = p(O~jl s2,«) j = 1 , . .  ,qi 

We call this property parameter modularity, because it says that the densities for parame- 
ters O~j depend only on the structure of the network that is local to variable xi--namely, 
Oij only depends on xi and its parents. For example, consider the network structure 
x -+ y and the empty structure for our two-variable domain. In both structures, x 
has the same set of parents (the empty set). Consequently, by parameter modularity, 
p(O~]Bh~y, ~) = p(OzlB)y, ~). We note that CH, Buntine, and SDLC implicitly make 
the assumption of parameter modularity (Cooper & Herskovits, 1992, Equation A6, p. 
340; Buntine, 1991, p. 55; Spiegelhalter et al., 1993, pp. 243-244). 

The fourth assumption restricts each parameter set Oij to have a Dirichlet distribution: 

ASSUMPTION 4 (DIRICHLET) Given a network structure Bs such that p(/3sh]() > 0, 
B h p(O~s[ s, ~) is Dirichlet for all Oij C_ Oßs. That is, there exists exponents N~jk, which 

depend on B )  and ~, that satisfy 

r T  N(jk--1 
p ( O ~ j l B ) ,  ~) = c .  110ij~ 

k 

where c is a normalization constant. 

When every parameter set of Bs has a Dirichlet distribution, we simply say that 
p(OÆsIß~~,~) is Dirichlet. Note that, by the assumption of parameter modularity, we 
do not require Dirichlet exponents for every network structure B,.  Rather we require 
exponents only for every node and for every possible patent set of each hode. 

Assumptions 1 through 4 are assumptions about the domain. Given Assumption 1, 
we can compute p(DIOßs, B), ~) as a function of OÆs for any given database (see 
Equation 18). Also, as we show in Section 5, Assumptions 2 through 4 determine 
p(OßsIß) ,  ~) for every network structure Bs. Thus, from the relation 
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/ Bh P(D, Bhl«) =p(Bhl« )  P(DI~)Bs, Bh,«) p(Oss[ ~,«) d(gB, (16) 

these assumptions in conjunction with the prior probabilities of network structure p(B h I~) 
form a complete representation of the user's prior knowledge for purposes of computing 
p(D, Bh l{). By a similar argument, we can show that Assumptions 1 through 4 also 
determine the probability distribution p(CID , B h, ~) for any given database and network 
structure. 

In contrast, the fifth assumption is an assumption about the database. 

ASSUMPTION 5 (COMPLETE DATA) The database is complete. That is, it contains 
no missing data. 

This assumption was made in order to compute p(D, Bh[g) and p(CI D, B), ~) in closed 
form. In this paper, we concentrate on complete databases for the same reason. Nonethe- 
less, the reader should recognize that, given Assumptions 1 through 4, these probabilities 
can be computed--in principle--for any complete or incomplete database. In practice, 
these probabilities can be approximated for incomplete databases by well-known statis- 
tical methods. Such methods include filling in missing data based on the data that is 
present (Titterington, 1976; Spiegelhalter & Lauritzen, 1990), the EM algorithm (Demp- 
ster, 1977), and Markov chain Monte Carlo methods (e.g., Gibbs sampling) (York, 1992; 
Madigan & Raftery, 1994). 

Let us now explore the consequences of these assumptions. First, from the multinomial- 
sample assumption and the assumption of no missing data, we obtain 

flflfi p(Cz[Dz, OÆs, Bs ~) = viJ kDllijk (17)  

i=1 j = l  k = l  

where lujk = 1 if xi = k and 1-Ii = j in case Cz, and lujk = 0 otherwise. Thus, if we 
let NijÆ be the number of cases in database D in which xi = k and I'ii = j ,  we have 

/ i / ifi  p(DtOßs , B h, ~) = 0 N~~k (18) ijk 
i=1 j = l  k= l  

From this result, it follows that the parameters tgB~ remain independent given database D, 
a property we call posterior parameter independence. In particular, from the assumption 
of parameter independence, we have 

ql 

p( ~)B, ID, B), ~) = c . p( DlOm, B), ~) ~I  I1  P( O~JtB2, ~) (19) 
i=1 j = l  

where c is some normalization constant. Combining Equations 18 and 19, we obtain 

q~ i ~  AN~~~ (20) p(~gB~bD, B),~) = c. I I  I l  p(e~yIß),~) ~~jk 
i ~ l  j = l  k= l  
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and posterior parameter independence follows. We note that, by Equation 20 and the 
assumption of parameter modularity, parameters remain modular a posteriori as weil. 

Given these basic relations, we can derive a metric and a formula for p(CID, B h, ~). 
From the mies of probability, we have 

m 

p(DtB~, ~) = Hp(CzlDz, Bh, ~) (21) 
/ = 1  

LFrom this equation, we see that the Bayesian scoring metric can be viewed as a form 
of cross validation, where rather than use D \ {CI} to predict Cz, we use only cases 
C 1 , - . ,  Cz-1 to predict Cz. 

Conditioning on the parameters of the network structure Bs, we obtain 

p(CzIDz,Bh,~) =/p(CzIDz,eBs,B) ,~) .  p(~3BsID~,Bh,~) dOßs (22) 

Using Equation 17 and posterior parameter independence to rewrite the first and second 
terms in the integral, respectively, and interchanging integrals with products, we get 

i = 1  j = l  k = l  

When l l i jk  = 1 ,  the integral is the expectation of Oij k with respect to the density 
P( (~ij IDz, B) , ~). Consequently, we have 

p(«,]D,,Bhs,«) = H fi ~ E(OijklDi,Bhs,~) 1'«'k (24) 
i = l j = l k = l  

To compute p(CID , B), ~) we set l = m + 1 and interpret Cm+, to be C. To compute 
p(DIB), ~), we combine Equations 21 and 24 and rearrange products obtaining 

{=i j=l k=l l=l 

Thus, all that remains is to determine to the expectations in Equations 24 and 25. Given 
the Dirichlet assumption (Assumption 4), this evaluation is straightforward. Combining 
the Dirichlet assumption and Equation 18, we obtain 

~£ 
= ANtik +N~jk-1  

p(O~jID, B,  h, ~) c.  I l  veäk (26) 
k = l  

where c is another normalization constant. Note that the counts NijÆ are a sufficient 
statistie for the database. Also, as we discussed in Section 2, the Dirichlet distributions are 
conjugate for the database: The posterior distribution of each parameter ~ i j  remains in 
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the Dirichlet family. Thus, applying Equations 12 and 26 to Equation 24 with 1 = m +  1, 
Cm+l = C, and D,~+I --- D, we obtain 

~/I/I (~:j~ ) p(C,~+liD, Bh,~)= + Nijk lm+l'iJk 

i :1  j = l k : l  ~k N~tj "~- ~ 
(27) 

where 

7~i 3°i 

t N'  =-- E Nijk 
k=l k=l 

Similarly, from Equation 25, we obtain the scoring metric 

p(D, Bh[«) h f i  f I  { [  N~/jl N~~I + 1 N~IJl+ N i j l - l l  
: p ( B s l ~ ) -  ~ -  , .-. , ; ~ - f j  

/:1 j=l  L N~j N~j + 1 N~j 

N~5~ N~5 ~ + 1 N~5 ~ + N~j~ - 1 

N~'j + N~j~ N~'j + N~jl + 1 N:'j + N~j~ + N~j: - 1 ' 

~3rl *3r~ + 1 N~jr ~ + Nijr~ - 1 
, ~,-1 " ' V ' r ' - l N i j k  + l " "  N ~ j + ~ - - - 1  N:~ + Ek=l N~jk N~j + ~k=~ 

h H ~  r(N:¢) ~ I'(N:jk + N~j~) (28) 
= p(Bs I~) r(N'j + N~j) " r(N'sk ) i=1 j = l  k=l 

We call Equation 28 the BD (Bayesian Dirichlet) metric. 
As is apparent from Equation 28, the exponents N~~Æ in conjunction with p(Bhl~) 

completely specify a user's current knowledge about the domain for purposes of learning 
network structures. Unfortunately, the specification of N~j k for all possible variable- 
parent configurations and for all values of i , j ,  and k is formidable, to say the least. 
CH suggest a simple uninformative assignment N~j k = 1. We shall refer to this special 
case of the BD metric as the K2 metric. Buntine (1991) suggests the uninformative 
assignment Ni~ Æ = N' / ( r i .  qi). We shall examine this special case again in Section 5.2. 

In Section 6, we address the assessment of the priors on network structure p(Bh~l~). 

4. Acausal networks, causal networks, and likelihood equivalence 

In this section, we examine another assumption for learning Bayesian networks that has 
been previously overlooked. 

Before we do so, it is important to distinguish between acausal and causal Bayesian 
networks. Although Bayesian networks have been formally described as a representation 
of conditional independence, as we noted in Section 2, people often construct them 
using notions of cause and effect. Recently, several researchers have begun to explore 
a formal causal semantics for Bayesian networks (e.g., Pearl & Verma, 1991, Spirtes 
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et al., 1993, Druzdzel & Simon, 1993, and Heckerman & Shachter, 1995). They argue 
that the representation of causal knowledge is important not only for assessment, but for 
prediction as welk In particular, they argue that causal knowledge--unlike knowledge of 
correlation--allows one to derive beliefs about a domain after intervention. For example, 
most of us believe that smoking causes lung cancer. From this knowledge, we infer that if 
we stop smoking, then we decrease our chances of getting lung cancer. In contrast, if we 
knew only that there was a statistical correlation between smoking and lung cancer, then 
we could not make this inference. The formal semantics of cause and effect proposed 
by these researchers is not important for this discussion. The interested reader should 
consult the references given. 

First, let us consider acausal networks. Recall our assumption that the hypothesis 
B h is true iff the database D is a collection of multinomial samples determined by the 
network structure Bs. This assumption is equivalent to saying that (1) the database D is a 
multinomial sample from the joint space of U with parameters (gu, and (2) the hypothesis 
B h is true iff the parameters (gu satisfy the conditional-independence assertions of Bs. 
We can think of condition 2 as a definition of the hypothesis B h. 

For example, in our two-binary-variable domain, regardless of which hypothesis is true, 
we may assert that the database is a multinomial sample from the joint space U -- {x, y} 
with parameters (gG = {0zy, Oxg, O9x, 0~9 }. Furthermore, given the hypothesis Bh_+y - 
for example--we know that the parameters (gu are unconstrained (except that they must 
sum to one), because the network structure x --+ y represents no assertions of conditional 
independence. In contrast, given the hypothesis B h zu, we know that the parameters (gu 
taust satisfy the independence constraints Oxy = OxOy, 0~~ = 0~09, and so on. 

Given this definition of B h for acausal Bayesian networks, it follows that if two network 
structures Bsl and Bs2 are equivalent, then B~ h = Bs h.  For example, in our two-variable 

h B h assert that there are no constraints on the domain, both the hypotheses Bx__,v and x~-v 
parameters (gu. Consequently, we have B h = B h In general, we call this property x---+y x~---y" 

hypothesis equivalence. 4 

In light of this property, we should associate each hypothesis with an equivalence 
class of structures rather than a single network structure. Also, given the property of 
hypothesis equivalence, we have prior equivalence: if network structures /331 and Bs2 
are equivalent, then p(Bhll~ ) = p(Bsh2[~); likelihood equivalence: if Bsl and Bs2 are 
equivalent, then for all databases D, p( D[Bhl, ~) = p( DIßh2, (); and score equivalence: 
if Bs1 and Bs2 are equivalent, then p(D, Bhl[~ ) = p(D, Bsh21~). 

Now, ler us consider causal networks. For these networks, the assumption of hypothesis 
equivalence is unreasonable. In particular, for causal networks, we taust modify the 
definition of B h to include the assertion that each nonroot node in Bs is a direct causal 
effect of its patents. For example, in our two-variable domain, the causal networks x -+ y 
and x +- y represent the same constraints on (gg (i.e., none), but the former also asserts 
that x causes V, whereas the latter asserts that y causes z. Thus, the hypotheses Bhz_~y 

h and Bx~_y are not equal. Indeed, it is reasonable to assume that these hypotheses--and 
the hypotheses associated with any two different causal-network structures--are mutually 
exclusive. 
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Nonetheless, for many real-world problems that we have encountered, we have found 
it reasonable to assume likelihood equivalence. That is, we have found it reasonable to 
assume that data cannot distinguish between equivalent network structures. Of course, 
for any given problem, it is up to the decision maker to assume likelihood equivalence or 
not. In Section 5.6, we describe a characterization of likelihood equivalence that suggests 
a simple procedure for deciding whether the assumption is reasonable in a given domain. 

Because the assumption of  likelihood equivalence is appropriate for learning acausal 
networks in all domains and for learning causal networks in many domains, we adopt 
this assumption in our remaining treatment of scoring metrics. As we have stated it, 
likelihood equivalence says that, for any database D, the probability of D is the same 
given hypotheses corresponding to any two equivalent network structures. From our 
discussion surrounding Equation 9, however, we may also state likelihood equivalence 
in terms of O~: 

ASSUMPTION 6 (LIKELIHOOD EQUIVALENCE) Given two network structures Bsl and 
Bs2 such that p(B)I[~ ) > 0 and p(Bhzl~) > O, if Bsl and Bs2 are equivalent, then 
p(Ou IB)~, ~) = p(e)ulB)2, ~).5 

5. The BDe Metric 

The assumption of likelihood equivalence when combined the previous assumptions in- 
troduces constraints on the Dirichlet exponents N~j k. The result is a likelihood-equivalent 
specialization of the BD metric, which we call the BDe metric. In this section, we derive 
this metric. In addition, we show that, as a consequence of the exponent constraints, 
the user may construct an informative prior for the parameters of all network structures 
merely by building a Bayesian network for the next case to be seen and by assess- 
ing an equivalent sample size. Most remarkable, we show that Dirichlet assumption 
(Assumption 4) is not needed to obtain the BDe metric. 

5.1. Informative Priors l 

In this section, we show how the added assumption of likelihood equivalence simplifies 
the construction of informative priors. 

Before we do so, we need to define the concept of a complete network structure. 
A complete network structure is one that has no missing edges--that is, it encodes 
no assertions of conditional independence. In a domain with n variables, there are n! 
complete network structures. An important property of complete network structures is 
that all such structures for a given domain are equivalent. 

Now, for a given domain U, suppose we have assessed the density p(@u[t3~c,~ ), 
where B~c is some complete network structure for U. Given parameter independence, 
parameter modularity, likelihood equivalence, and one additional assumption, it turns out 
that we can compute the prior p(OBsIB),  ~) for any network structure Bs in U from the 
given density. 
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To see how this computation is done, consider again our two-binary-variable do- 
main. Suppose we are given a density for the parameters of the joint space p(Ozy, Oey, 

h O~~lB~_~y,~ ). From this density, we construct the parameter densities for each of the 
three network structures in the domain. First, consider the network structure x ---+ y. A 
parameter set for this network structure is {0~, 0ylx , Oyle }. These parameters are related 
to the parameters of the joint space by the following relations: 

Thus, we may obtain p(Oz, Oylx, h Oyl~ z [B~+y, ~) from the given density by changing vari- 
ables: 

p(Ox ' Oylx ' Oyl2 h 

where Jx-,y is the Jacobian 

O0~y/O0~ 
J~-~v = OOxy/OOyl,: 

O0xv/OOv,~ 

«) &--.y p(Oxy, 0~~, h = . Ox~IB~_~~,~) (29) 

of the transformation 

OO~y/O0~ õOxg/õO~ 
oO~ylO%x oo~~lO%x = o~(1 - o~) (30) 
O0~y/OOyr~ O0~~/OOvl~ 

The Jacobian JBso for the transformation from Ou to OBst, where /?sc is an arbitrary 
complete network structure, is given in the Appendix (Theorem 10). 

Next, consider the network structure x +-- y. Assuming that the hypothesis Bhz+_y is also 
possible, we obtain P(Ozv, Oey, h h = Oey, OzglBz~y, ~) by likelihood 
equivalence. Therefore, we can compute the density for the network structure x +-- y 
using the Jacobian Jz~-y = Ou(1 - Oy). 

Finally, consider the empty network structure. Given the assumption of parameter 
independence, we may obtain the densities p(Oxlß)y,~) and p(OyIßhu,~)separately. 

h To obtain the density for 0x, we first extract p(O~lB:~~u,~ ) from the density for the 
network structure x --+ y. This extraction is straightforward, because by parameter 
independence, the parameters for x --+ y must be independent. Then, we use parameter 
modularity, which says that P(Õz I ß)y,  ~) = h p(Ox[B~._+y, ~). To obtain the density for Oy, 

h we extract p(OuIßz~_u, ~) from the density for the network structure x +- y, and again 
apply parameter modularity. The approach is summarized in Figure 5. 

In this construction, it is important that both hypotheses B h and Bh+__ have nonzero X----~y 2c y 
prior probabilities, lest we could not make use of likelihood equivalence to obtain the 
parameter densities for the empty structure. In order to take advantage of likelihood 
equivalence in general, we adopt the following assumption. 

ASSUMPTION 7 (STRUCTURE POSSIBILITY) Given a domain U, h p(/L~I~) > Ofo~d l  
complete network structures Bsc. 

Note that, in the context of acausal Bayesian networks, there is only one hypothesis 
corresponding to the equivalence class of complete network structures. In this case, 
Assumption 7 says that this single hypothesis is possible. In the context of causal 
Bayesian networks, the assumption implies that each of the n[ complete network struc- 
tures is possible. Although we make the assumption of structure possibility as a marter 
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B h p(%, Ox~, o~,I BL,ù ~) = p(O.ù % ,  %,,I ~~_,,, ~) 

/ c~an~~o~ \ ~  
variable 

Bx~y: (>--<> ~ ~ y : ~  
~ m  parameter 

odularity / / / "  

< : Q  (ê) 

Figure 5. A computation of the parameter densities for the three network structures of the two-binary-variable 
dornain {x, y}. The approach computes the densities from p(Ozu, Oxg, Oey IB)~y, ~), using likelihood equiv- 
alence, parameter independence, and parameter modularity. 

of convenience, we have found it to be reasonable in many real-world network-learning 
problems. 

Given this assumption, we can now describe our construction method in general. 

THEOREM 2 Given domain U and a probability density p(Ou[Bhsc,~) where Bse is 
some complete network structure for U, the assumptions of parameter independence 
(Assumption 2), parameter modularity (Assumption 3), likelihood equivalence (Assump- 
tion 6), and structure possibiIity (Assumption 7) uniquely determine p(Oßslß), ~) for 
any network structure Bs in U. 

B h Proof: Consider any B~. By Assumption 2, if we determine p(Oij] , ~ )  for every 
parameter set Oij associated with B~, then we determine p(Oßslß), ~). So consider a 
particular @~j. Let IIi be the parents of zi in Bs, and Bsc, be a complete belief-network 
structure with variable ordering IIi, xi followed by the remaining variables. First, using 
Assumption 7, we recognize that the hypothesis Bs~, is possible. Consequently, we use 
Assumption 6 to obtain p(Ou [Bh~c,, ~) = p(Ou [Bsh~, ~). Next, we change variables from 
Ou to OBst yielding h p(O~s« Ißs«, ~). Using parameter independence, we then extract 

, h the density p(OijlBL,,~) from p(Oßs~ Ißs~,~). Finally, because zi has the same 
parents in Bs and Bs«, we apply parameter modularity to obtain the desired density: 
p(e~jlÆ2, ~) = p ( %  IBL,, ~). To show uniqueness, we note that the only freedom we 
have in choosing /3sc is that the parents of zi can be shuffled with one another and 
nodes following zi in the ordering can be shuffled with one another. The Jacobian of the 
change-of-variable from O~ to Ossc, has the same terms in Oij regardless of our choice. 
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5.2. Consistency and the BDe Metric 

In our procedure for generating priors, we cannot use an arbitrary density P(@u [Bh, ~). 
In our two-variable domain, for example, suppose we use the density 

C C 
p(Oxy, O~ v, h 

(ox~ + o~~)(1 - ( %  + o~~)) ox(1 - ox) 

where c is a normalization constant. Then, using Equations 29 and 30, we obtain 

p(O~,Oyb, Oyl~ h 

for the network structure x --+ y, which satisfies parameter independence and the Dirichlet 
assumption. For the network structure y ---+ x, however, we have 

c - 0 y ( 1  - ey)  h p( e , ,  O~l,, Oxl~lBx~v, ~) - 
0~(1 - e x )  

c .  0•(1 - 0u) 

(O~Ox~, + ( 1  - »~)o~r~)(1 - (o~o~j~ + (1 - 0~)0x~~)) 

This density satisfies neither parameter independence nor the Dirichlet assumption. 
In general, if we do not choose p(@~]Bhe,~) carefully, we may not satisfy both pa- 

rameter independence and the Dirichlet assumption. Indeed, the question arises: Is there 
any ehoice for p(@u]Bhc, ~) that is consistent with these assumptions? The following 
theorem and corollary answers this question in the affirmative. (In the remainder of 
Section 5, we require additional notation. We use Ox=kx[Y=ky to denote the multino- 
mial parameter corresponding to the probability p(X = kx]Y = ky,~); kx  and kv 
are often implicit. Also, we use  I~Xiy=ky to denote the set of multinomial parameters 
corresponding to the probability distribution p(XIY = ky, ~), and OxIY to denote the 
parameters (~Xiy=ky for  all states of ky. When Y is empty, we omit the conditioning 
bar.) 

THEOREM 3 Given a domain U = { X l , . . . ,  xn} with multinomial parameters Ou, if 
the density p(Oul~) is Dirichlet--that is, if 

p ( o v l ~ )  = ~- [ I  L~~l,-,Xn~f0 1 < ,  ........ --1 (31) 
Zl ~ . . ,  ~ZrL 

then, for any complete network structure Bsc in U, the density p(Oßscl~) is Dirichlet 
and satisfies parameter independence. In particular, 

p(OB~~I~) = c. 1-[ [Oz~lzz ..... z~ 1]~N'~{ ~1 . . . . . . .  1 -1  (32) 
i = l  Xl. . .»x~ 

where 

N' = ~ ' x~lxl ..... ~,_1 N;1 ..... xn (33) 
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Proof: Let/3~c be any complete network structure for U. Reorder the variables in U 
so that the ordering matches this structure, and relabel the variables x i , . . . ,  xn. Now, 
change variables from O ~  ....... to OB~c using the Jacobian given by Theorem 10. The 

7~ 
dimension of this transformation is [1-Ii=i ri] - 1 where ri is the number of states of 
xi. Substituting the relationship 0~ ..... ~ = l-li~=i 0:~dx ~ ...... ~_~, and multiplying with 
the Jacobian, we obtain 

p ( e ~ l ~ )  = { . . . . . . .  

e • I I  O=~lzl,'",z~-I 
2:1,...~Z n ~, i = 1  Xl~...~Xi 

n which implies Equation 32. Collecting the powers of 0~lxl ..... x~_l, and using I ] j= i+ l  r j  = 
~ + 1 , . .  ,=~ 1, we obtain Equation 33. • 

COROLLARY 1 Let U be a domain with muhinomial parameters Ou, and Bsc be a 
complete network structure for U such that h p(Bsc]~ ) > O. I f  p((~ulBhc,~) is Dirichlet, 
then P( (~ Bsc 1Bhsc, ~ ) is Dirichlet and satisfies parameter independence. 

Theorem 3 is stated for the two-variable case in Dawid and Lauritzen (1993, Lemma 
7.2). 

Given these results, we can compute the Dirichlet exponents N~j k using a Dirichlet 

distribution for p(@ullTh~,~) in conjunction with our method for constructing priors 
described in Theorem 2. Namely, suppose we desire the exponent N~j k for a network 
structure where xi has parents Hi. Let Bsc, be a complete network structure where xi 
has these parents. By likelihood equivalence, we have p(OulB)~,, ~) = p(t3uIBL, ~). 
As we discussed in Section 2, we may write the exponents for P((~u tBhc, ~) as follows: 

(34) 

where N ~ is the user's equivalent sample size for the p(~)u ]B)¢, ~). Furthermore, by def- 
inition, N~jk is the Dirichlet exponent for Oijk in Bs~,. Consequently, from Equations 33 
and 34, we have 

.Bh  N:jk = N '  p(x~ = k, IIi = 3l ~c,~) 

We call the BD metric with this restriction on the exponents the BDe metric ("e" for 
likelihood equivalence). To summarize, we have the following theorem. 

THEOREM 4 (BDE METRIC) Given domain U, suppose that p(~)u]Bh~c,() is Dirich- 
let with equivalent sample size N'  for some complete network structure Bs¢ in U. Then, 
for any network structure Bs in U, Assumptions 1 through 3 and 5 through 7 imply 

p(D, ~ p(B~ ~ p ~ ) .  r (x: j )  . ~[  r(N:j~+N~j~) 
k = l  
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where 

t . B  h (35) 

Theorem 3 shows that parameter independence, likelihood equivalence, structure pos- 
sibility, and the Dirichlet assumption are consistent for complete network structures. 
Nonetheless, these assumpti0ns and the assumption of parameter modularity may not be 
consistent for all network structures. To understand the potential for inconsistency, note 
that we obtained the BDe metric for all network structures using likelihood equivalence 
applied only to complete network structures in combination with the other assumptions. 
Thus, it could be that the BDe metric for incomplete network structures is not likelihood 
equivalent. Nonetheless, the following theorem shows that the BDe metric is likelihood 
equivalent for all network structures--that is, given the other assumptions, likelihood 
equivalence for incomplete structures is implied by likelihood equivalence for complete 
network structures. Consequently, our assumptions are consistent. 

THEOREM 5 For all domains U and all network structures Bs in U, the BDe metric is 
likelihood equivalent. 

Proof: Given a database D, equivalent sample size N/, joint probability distribution 
p(U[B)c,~ ), and a subset X of U, consider the following function of X: 

l (x) : 1-I r ( x '  p (x  : kxlÆ~c, ~) + ;v~x) 

where kx  is a state of X,  and Nkx is the number of cases in D in which X = kx .  
Then, the likelihood term of the BDe metric becomes 

P(DIB) ,  ~) = f l  
/({xi} u IIi) 

i= I  l(~Ii) (36)  

Now, by Theorem 1, we know that a network structure can be transformed into an 
equivalent structure by a series of restricted arc reversals. Thus, we can demonstrate 
that the BDe metric satisfies likelihood equivalence in general, if we can do so for the 
case where two equivalent structures differ by a single restricted arc reversal. So, let 
i3sl and Bs2 be two equivalent network structures that differ only in the direction of the 
arc between xi and xj (say z~ ~ xj in Bs1). Let _R be the set of parents of xi in/3sl .  
By Theorem 1, we know that R U {xi} is the set of parents of xj  in Bs1, R is the set 
of parents of xj  in Bs2, and R U {xj}  is the set of parents of xi in Bs2. Because the 
two structures differ only in the reversal of a single arc, the only terms in the product of 
Equation 36 that can differ are those involving xi and z j .  For Bs1, these terms are 

l({x d U R) l({x~, xj} ~ R) 

l(R) l({~~} u R) 

whereas for Bs2, they are 
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I(R) u R) 

These terms are equal, and hence :b(DIB)I, ~) = P(DlSh2, {). 

We note that Buntine's (1991) metric is a special case of  the BDe metric where every 
state of the joint space, conditioned on Bsh~, is equally likely. We call this special case the 
BDeu metric ("u" for uniform joint distribution). Buntine noted that this metric satisfies 
the property that we call likelihood equivalence. 

5.3. The Prior Network 

To calculate the terms in the BDe metric (or to construct informative priors for a more 
general metric that can handle missing data), we need priors on network structures 
p(Bh~l~) and the Dirichlet distribution p(evlBL, ). In Section 6, we provide a sim- 
ple method for assessing priors on network structures. Here, we concentrate on the 
assessment of the Dirichlet distribution for (gg. 

Recall from Sections 2 and 5.2 that we can assess this distribution by assessing a single 
equivalent sample size N '  for the domain and the joint distribution of  the domain for the 
next case to be seen (p(UIBhsc, ~)), where both assessments are conditioned on the state 
of  information Bhc tj ~. As we have discussed, the assessment of equivalent sample size 
is straightforward. Furthermore, a user can assess p(U]Bh~c, ~) by building a Bayesian 
network for U given Bshc. We call this network the user's prior network. 

The unusual aspect of this assessment is the conditioning hypothesis Bhsc. Whether 
we are dealing with acausal or causal Bayesian networks, this hypothesis includes the 
assertion that there are no independencies in the long run. Thus, at first glance, there 
seems to be a contradiction in asking the user to construct a prior network--which may 
contain assertions of independence--under the assertion that Bsh~ is true. Nonetheless, 
there is no contradiction, because the assertions of independence in the prior network refer 
to independencies in the next case to be seen, whereas the assertion of full dependence 
Bshc refers to the long run. 

To help illustrate this point, let us consider the following acausal example. Suppose a 
person repeatedly rolls a four-sided die with labels 1, 2, 3, and 4. In addition, suppose that 
he repeatedly does one of the following: (1) rolls the die once and reports "x = t rue"  if 
the die lands 1 or 2, and '°y = true" if the die lands 1 or 3, or (2) rolls the die twice and 
reports "x = t rue"  if the die lands 1 or 2 on the first roll and reports "y = t rue"  if the die 
lands 1 or 3 on the second roll. In either case, the multinomial assumption is reasonable. 
Furthermore, condition 2 corresponds to the hypothesis B)v:  x and y are independent in 

h ,5. . the long run, whereas condition 1 corresponds to the hypothesis B:~._,v = Bx,__y. x and y 
are dependent in the long run. 6 Also, given these correspondences, parameter modularity 
and likelihood equivalence are reasonable. Finally, let us suppose that the parameters 
of the multinomial sample have a Dirichlet distribution so that parameter independence 
holds. Thus, this example fits the assumptions of  our learning approach. Now, if we 
have no reason to prefer one outcome of the die to another on the next roll, then we will 
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have p(y lx ,  B~~y ,  «) = p ( y I ß ~ + y ,  «). That is, our pffor network will contain no arc 
h between x and 9, even though, given B~__+ v, x and y can be dependent in the long rum 

We expect that most users would prefer to construct a prior network without having 
to condition on B~%. In the previous example, it is possible to ignore the conditioning 
hypothesis, because p(U[Bh~y,~) = p(U[Bh~y,~) = p(Ul~ ). In general, however, a 
user cannot ignore this hypothesis. In our four-sided die example, the joint  distributions 
p(U[B)_,v , ~) and p(U[B)y, ~) would have been different had we not been indifferent 
about the die outcomes. We have had little experience with training people to condition 
on B~h~ when constructing a prior network. Nonetheless, stoffes like the four-side die 
may help users make the necessary distinction for assessment. 

5.4. A Simple Example 

Consider again our two-binary-variable domain. Let B x + v  and Bv+z denote the network 
structures where x points to y and y points to x, respectively. Suppose that N '  = 12 
and that the user 's  prior network gives the joint  distribution p(x, ylß~h+y, {) = 1/4, 
p(x, - h yIßx___,y,~) = 1/6, p(Y:,ylßh_+y,~) = 1/4, and p ( :2 , -  h y[Bx__,y,~) = 1/3. Also, 
suppose we observe two cases: C1 = {x ,y}  and C2 = {x, ft}. Let i = 1 (2) refer 
to variable x (y), and k = 1 (2) denote the true (false) state of  a variable. Thus, for 
the network stmcture x + y, we have the Dirichlet exponents N~I 1 = 5, N~I 2 = 7, 
N~I ] = 3, N~I 2 = 2, N~21 = 3, and N~22 = 4, and the sufficient statistics N l l l  = 
2, N n 2  = 0, N211 = 1, N212 = 1, N221 = 0, and N222 = 0. Consequently, we obtain 

11! 6! 6! 4! 3!2! 6!2!3!  1 
pvDißz+y,g ) ~  , A ~-, = 1 3 ! 4 ! 6 ! ' 6 ! 2 ! 1 !  6! 2!3! -- 26 

For the network structure x ~ y, we have the Dirichlet exponents N~I 1 = 3, N~I 2 = 3, 
N~21 = 2, N{22 = 4, N~I 1 = 6, and N~I 2 = 6, and the sufficient statistics N n l  = 
1, Nl12 = 0, N19~1 = 1, N122 = 0, N211 = 1, and N212 = 1. Consequently, we have 

11! 6! 6! s !3!2!  s !2!3!  1 [ i eil ~ \  

p v D i B ; ~ _ y , ¢ )  = -iäf. S! 5! " 6! 2! 2! 6! 1! 3! - 26 

As required, the BDe metric exhibits the property of likelihood equivalence. 

In contrast, the K2 metric (all N~tjÆ = 1) does not satisfy this property. In particular, 
given the same database, we have 

1! 2!0! 1!1!1!  1 !0 !0!  1 

P(D[Bg'--+v'¢) = 3! 0! 0! " 3! 0! 0~" 1! 0! 0! - 18 

1! 1! 1! 1! 1!0! 1! 1!0! 1 
p~Diß~~_y , ,  , h {) = 3 ! 0 ! 0 ! ' 2 ! 0 ! 0 !  2 !0 !0 !  -- 24 
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5.5. Elimination o f  the Dirichlet Assumption 

In Section 5.2, we saw that when p(Ou I B2c, g) is Dirichlet, then p(OBsc IBs h, g) is con- 
sistent with parameter independence, the Dirichlet assumption, likelihood equivalence, 
and structure possibility. Therefore, it is natural to ask whether there are any other 
choices for p(OuIBh~,{) that are similarly consistent. Actually, because the Dirichlet 
assumption is so strong, it is more fitting to ask whether there are any other choices for 

B h P(OuI so, ~) that are consistent with all but the Dirichlet assumption. In this section, we 
show that, if each density function is positive (i.e., the range of each function includes 
only numbers greater than zero), then a Dirichlet distribution for p((gulBhc, ~) is the 
only consistent choice. Consequently, we show that, under these conditions, the BDe 
metric follows without the Dirichlet assumption. 

First, let us examine this question for our two-binary-variable domain. Combining 
Equations 29 and 30 for the network structure x ~ y, the corresponding equations for 
the network structure x ~ y, likelihood equivalence, and structure possibility, we obtain 

p(O~, h 0~(1 -- O~) -- O<v , OxlgIB~,__v, ~) (37) 

where 

Oy = 0~0vl x + (1 -0z )0y l~  

Ozy 
Oxly = o~ovl~+(l_Oz)Oul. ~ (38) 

0~, 
Ox19 = l_(O~Ovl=q-( l_oz)oule  ) 

Applying parameter independence to both sides of Equation 37, we get 

0~(1  - 0x)  
f~(Oz) 41~(%~) & ~ ( 0 ~ , ~ ) -  0~(1 0~) 4(0~) f~,~(Ox,~) fxt~(O~) (39) 

where f~, full, fyle, fy, f~ly, and f<v are unknown density functions. Equations 38 
and 39 define a functional equation. Methods for solving such equations have been 
well studied (see, e.g., Aczel, 1966). In our case, Geiger and Heckerman (1995) show 
that, if each function is positive, then the only solution to Equations 38 and 39 is for 
p ( 0 ~ ,  h O~90evlB~__.u,g) to be a Dirichlet distribution. In fact, they show that, even 
when x and/or y have more than two states, the only solution consistent with likelihood 
equivalence is the Dirichlet. 

THEOREM 6 (Geiger & Heckerman, 1995) Let Oxv, Oz U Oul:~, and 0 u U ~zly be 
(positive) multinomiaI parameters related by the rules of probability. I f  

r~ 7 r~ orv  -- 1" rv 

I~k= l  x = k  4 ( ( ~ y )  I-If~ly=Z(@=lu=Z) (40) 
H / = I  ~ y = l  k=l  _ /=1 

where each function is a positive probability density function, then p(6)=y [{) is Dirichlet. 

This result for two variables is easily generalized to the n-variable case, as we now 
demonstrate. 
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THEOREM '7 Let Bscl and Bscz be two complete network structures for U with variable 
orderings ( x l , . . . X n )  and (xn ,x l , . . . , xn -1) ,  respectiveIy. If both structures have 
(positive) multinomial parameters that obey 

(41) 

and positive densities p(O~~~l~ ) that satisfy parameter in«ependence, then p(Out~) is 
Dirichlet. 

Proof: The theorem is trivial for domains with one variable (n = 1), and is proved 
by Theorem 6 for n = 2. When n > 2, first consider the complete network structure 
Æscl. Clustering the variables X = { x l , . . .  ,x,~-l} into a single discrete variable 

n--1 with q = IIi=1 ri states, we obtain the network structure X -+ Xn with multinomial 
parameters Ox and O~~lX given by 

n - 1  

Ox = H Ozdzl,"',x~-I 
i=1 

OZr~IX = OZ,~I~I,...,X,~--I 

By assumption, the parameters of Bscl satisfy parameter independence. Thus, when we 
change variables from Oß~cl to Ox U @~~lX using the Jacobian given by Theorem 10, 
we find that the parameters for X --+ x,~ also satisfy parameter independence. Now, 
consider the complete network structure B~~» With the same variable cluster, we obtain 
the network structure xn -+ X with parameters Oz~ (as in the original network structure) 
and exl~~ given by 

n - 1  

OxIzn = I-I Oz~lzn,xl,...,xi_l 
i=1  

By assumption, the parameters of Bsc2 satisfy parameter independence. Thus, when we 
change variables from Oesc2 to @:~T~ O OXl~n (computing a Jacobian for each state of 
xn), we find that the parameters for x,~ --+ X again satisfy parameter independence. 
Finally, these changes of variable in conjunction with Equation 41 imply Equation 40. 
Consequently, by Theorem 6, p(Ox,~r~ ]B~t~, ~) = p(Ou IBid, ~) is Dirichlet. • 

Thus, we obtain the BDe metric without the Dirichlet assumption. 

THEOREM 8 Assumptions 1 through 7--excluding the Dirichlet assumption (Assump- 
tion 4)--and the assumption that parameter densities are positive imply the BDe metric 
(Equations 28 and 35). 

Proof: Given parameter independence, likelihood equivalence, structure possibility, and 
positive densities, we have from Theorem 7 that p(Ocllß~h~, ~) is Dirichlet. Thus, from 
Theorem 4. we obtain the BDe metric. • 
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The assumption that parameters are positive is important. For example, given a domain 
consisting of only logical relationships, we can have parameter independence, likelihood 
equivalence, and structure possibility, and yet p((3rJIBhc, ~) will not be Dirichlet. 

5.6. Limitations of Parameter Independence and Likelihood Equivalence 

There is a simple characterization of the assumption of parameter independence. Recall 
the property of posterior parameter independence, which says that parameters remain 
independent as long as complete cases are observed. Thus, suppose we have an uninfor- 
mative Dirichlet prior for the joint-space parameters (all exponents very close to zero), 
which satisfies parameter independence. Then, if we observe one or more complete 
cases, our posterior will also satisfy parameter independence. In contrast, suppose we 
have the same uninformative prior, and observe one or more incomplete cases. Then, our 
posterior will not be a Dirichlet distribution (in fact, it will be a linear combination of 
Dirichlet distributions) and will not satisfy parameter independence. In this sense, the as- 
sumption of parameter independence corresponds to the assumption that one's knowledge 
is equivalent to having seen only complete cases. 

When learning causal Bayesian networks, there is a similar characterization of the 
assumption of likelihood equivalence. (Recall that, when learning acausal networks, the 
assumption must hold.) Namely, until now, we have considered only observational data: 
data obtained without intervention. Nonetheless, in many real-world studies, we obtain 
experimental data: data obtained by intervention--for example, by randomizing subjects 
into control and experimental groups. Although we have not developed the concepts in 
this paper to demonstrate the assertion, it turns out that if we start with the uninformative 
Dirichlet prior (which satisfies likelihood equivalence), then the posterior will satisfy 
likelihood equivalence if and only if we see no experimental data. Therefore, when 
learning causal Bayesian networks, the assumption of likelihood equivalence corresponds 
to the assumption that one's knowledge is equivalent to having seen only nonexperimental 
data. 7 

In light of these characterizations, we see that the assumptions of parameter indepen- 
dence and likelihood equivalence are unreasonable in many domains. For example, if we 
learn about a portion of a domain by reading texts or applying common sense, then these 
assumptions should be suspect. In these situations, our methodology for determining an 
informative prior from a prior network and a single equivalent sample size is too simple. 

To relax one or both of these assumptions when they are unreasonable, we can use an 
equivalent database in place of an equivalent sample size. Namely, we ask a user to 
imagine that he was initially completely ignorant about a domain, having an uninforma- 
tive Dirichlet prior. Then, we ask the user to specify a database D~ that would produce a 
posterior density that reflects his current state of knowledge. This database may contain 
incomplete cases and/or experimental data. Then, to score a real database D, we score 
the database De U D, using the uninformative prior and a learning algorithm that handles 
missing and experimental data such as Gibbs sampling. 

It remains to be determined if this approach is practical. Needed is a compact rep- 
resentation for specifying equivalent databases that allows a user to accurately reflect 
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his current knowledge. One possibility is to allow a user to specify a prior Bayesian 
network along with equivalent sample sizes (both experimental and nonexperimental) for 
each variable. Then, one could repeatedly sample equivalent databases from the prior 
network that satisfy these sample-size constraints, compute desired quantities (such as a 
scoring metric) from each equivalent database, and then average the results. 

SDLC suggest a different method for accommodating nonuniform equivalent sample 
sizes. Their method produces Dirichlet priors that satisfy parameter independence, but 
not likelihood equivalence. 

6. Priors for Network Structures 

To complete the information needed to derive a Bayesian metric, the user must assess the 
prior probabilities of the network structures. Although these assessments are logically 
independent of the assessment of the prior network, structures that closely resemble the 
prior network will tend to have higher prior probabilities. Here, we propose the following 
parametric formula for p(B~[~) that makes use of the prior network P.  

Let 6i denote the number of nodes in the symmetric difference of II i(Bs) and I I i (P) :  
(Hi(Bs) (2 I I i (P) )  \ (IIi(Bs) N I I i (P) ) .  Then Bs and the prior network differ by (5 = 

n }-~~i=1 (5~ arcs; and we penalize Bs by a constant factor 0 < e; < 1 for each such arc. 
That is, we set 

h ~5 P(Bs I{) = c (42) 

where c is a normalization constant, which we can ignore when computing relative 
posterior probabilities. This formula is simple, as it requires only the assessment of a 
single constant ec. Nonetheless, we can imagine generalizing the formula by punishing 
different arc differences with different weights, as suggested by Buntine. Furthermore, 
it may be more reasonable to use a prior network constructed without conditioning on 
Bsh« 

We note that this parametric form satisfies prior equivalence only when the prior net- 
work contains no arcs. Consequently, because the priors on network structures for acausal 
networks must satisfy prior equivalence, we should not use this parameterization for 
acausal networks. 

7. Search Methods 

In this section, we examine methods for finding network structures with high posterior 
probabilities. Although our methods are presented in the context of Bayesian scoring 
metrics, they may be used in conjunction with nonBayesian metrics as well. Also, we 
note that researchers have proposed network-selection criteria other than relative posterior 
probability (e.g., Madigan & Raftery, 1994), which we do not consider here. 

Many search methods for learning network structure--including those that we describe- 
make use of a property of scoring metrics that we call decomposability. Given a network 
structure for domain U, we say that a measure on that structure is decomposable if it can 
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be written as a product of measures, each of which is a function only of one node and 
its parents. From Equation 28, we see that the likelihood p(DIB),  ~) given by the BD 
metric is decomposable. Consequently, if the prior probabilities of  network structures 
are decomposable, as is the case for the priors given by Equation 42, then the BD metric 
will be decomposable. Thus, we can write 

p(D, h [ I  s~ I~) = s (x~ l r ld  
i=1 

(43) 

where s(xi IIIi) is only a function of xi and its parents. Given a decomposable metric, we 
can compare the score for two network structures that differ by the addition or deletion 
of  arcs pointing to xi, by computing only the term s(x~[IIi) for both structures. We 
note that most known Bayesian and nonBayesian metrics for complete databases are 
decomposable. 

7.1. Special-Case Polynomial Algorithms 

We first consider the special case of finding the 1 network structures with the highest 
score among all structures in which every node has at most one parent. 

For each arc z j  ~ xi (including cases where z j  is null), we associate a weight 
w(xi, z j)  - logs(x~lxj) - logs(x~[(0). From Equation 43, we have 

n 

l ogp(D,  B)[~) = ~ l o g s ( x i l T h )  (44) 
i=1 

: k /x, 
i=1 i=1  

where 7h is the (possibly) null parent of  xi. The last term in Equation 44 is the same 
for all network structures. Thus, among the network structures in which each node has 
at most one parent, ranking network structures by sum of weights }--~i~=l w(x~, :h) or by 
score has the same result. 

Finding the network structure with the highest weight (1 = 1) is a special case of a well- 
known problem of finding maximum branchings described--for example-- in Evans and 
Minieka (1991). The problem is defined as follows. A tree-like network is a connected 
directed acyclic graph in which no two edges are directed into the same node. The root 
of a tree-like network is a unique node that has no edges directed into it. A branching is 
a directed forest that consists of  disjoint tree-like networks. A spanning branching is any 
branching that includes all nodes in the graph. A maximum branching is any spanning 

n 
branching which maximizes the sum of arc weights (in our case, ~ i = l  w(xi, 7h)). An 
efficient polynomial algorithm for finding a maximum branching was first described by 
Edmonds (1967), later explored by Karp (1971), and made more efficient by Tarjan 
(1977) and Gabow et al. (1984). The general case (l > 1) was treated by Camerini et 
al. (1980). 
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These algorithms can be used to find the 1 branchings with the highest weights re- 
gardless of  the metric we use, as long as one can associate a weight with every edge. 
Therefore, this algorithm is appropriate for any decomposable metric. When using met- 
rics that are score equivalent (i.e., both prior and likelihood equivalent), however, we 
have 

s(z~lxj)s(xjlO)=s(xj[xi)s(xil~) 

Thus, for any two edges xi --+ xj and xi +-- xj, the weights w(xi,xj)  and w(xj,xi)  
are equal. Consequently, the directionality of the arcs plays no role for score-equivalent 
metrics, and the problem reduces to finding the 1 undirected forests for which ~ w(xi, xj) 
is a maximum. For the case l = 1, we can apply a maximum spanning tree algorithm 
(with arc weights w(xi, xj)) to identify an undirected forest F having the highest score. 
The set of  network structures that are formed from F by adding any directionality to the 
arcs of  F such that the resulting network is a branching yields a collection of equivalent 
network structures each having the same maximal score. This algorithm is identical to the 
tree learning algorithm described by Chow and Liu (1968), except that we use a score- 
equivalent Bayesian metric rather than the mutual-information metric. For the general 
case (l > 2), we can use the algorithm of Gabow (1977) to identify the 1 undirected 
forests having the highest score, and then determine the 1 equivalence classes of network 
structures with the highest score. 

7.2. Heuristic Search 

A generalization of the problem described in the previous section is to find the I best 
networks from the set of  all networks in which each node has no more than k parents. 
Unfortunately, even when 1 = 1, the problem for k > 1 is NP-hard. In particular, let us 
consider the following decision problem, which corresponds to our optimization problem 
with 1 = 1: 

k-LEARN 
INSTANCE: Set of variables U, complete database D = {Ci,  • . . ,  Cm}, scoring metric 
M(D, Bs), and real value p. 
QUESTION: Does there exist a network structure Bs defined over the variables in U, 
where each node in Bs has at most k parents, such that M(D, Bs) >_ p? 

Höffgen (1993) shows that a similar problem for PAC learning is NP-complete. His 
results can be translated easily to show that k-LEARN is NP-complete for k > 1 when 
the BD metric is used. Chickering et al. (1995) show that k-LEARN is NP-complete, 
even when we use the likelihood-equivalent BDe metric and the constraint of  pri0r 
equivalence. 

Therefore, it is appropriate to use heuristic search algorithms for the general case k > 1. 
In this section, we review several such algorithms. 

As is the case with essentially all search methods, the methods that we examine have 
two components: an initialization phase and a search phase. For example, let us consider 
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the K2 search method (not to be confused with the K2 metric) described by CH. The 
initialization phase consists of choosing an ordering over the variables in U. In the 
search phase, for each node xi in the ordering provided, the node from {x l , - - . ,  xi-1} 
that most increases the network score is added to the parent set of xi, until no node 
increases the score or the size of Hi exceeds a predetermined constant. 

Spirtes and Meek (1995) and Chickering (1995b) describe algorithms that search 
through the space of network-structure equivalence classes. These algorithms are ap- 
propriate when score equivalence can be assumed. Here, we consider algorithms that 
search through the space of network structures, and hence are most useful for non-score- 
equivalent metrics. These algorithms make successive arc changes to network structure, 
and employ the property of decomposability to evaluate the merit of each change. The 
possible changes that can be made are easy to identify. For any pair of variables, if there 
is an arc connecting them, then this arc can either be reversed or removed. If there is 
no arc connecting them, then an arc can be added in either direction. All changes are 
subject to the constraint that the resulting network contain no directed cycles. We use 
E to denote the set of eligible changes to a graph, and A(e) to denote the change in 
log score of the network resulting from the modification e E E. Given a decomposable 
metric, if an arc to xi is added or deleted, only s(xi[II~) need be evaluated to determine 
A(e). If an arc between xi and xj is reversed, then only s(zilIIi) and s(xjlIIj) need 
be evaluated. 

One simple heuristic search algorithm is local search (e.g., Johnson, 1985). First, we 
choose a graph. Then, we evaluate A(e) for all e E E, and make the change e for which 
A(e) is a maximum, provided it is positive. We terminate search when there is no e with 
a positive value for A(e). As we visit network structures, we retain l of them With the 
highest overall score. Using decomposable metrics, we can avoid recomputing all terms 
A(e) after every change. In particular, if neither xi, xj, nor their parents are changed, 
then A(e) remains unchanged for all changes e involving these nodes as long as the 
resulting network is acyclic. Candidates for the initial graph include the empty graph, a 
random graph, a graph determined by one of the polynomial algorithms described in the 
previous section, and the prior network. 

A potential problem with local search is getting stuck at a local maximum. Methods for 
escaping local maxima include iterated local search and simulated annealing. In iterated 
local search, we apply local search until we hit a local maximum. Then, we randomly 
perturb the current network structure, and repeat the process for some manageable number 
of iterations. At all stages we retain the top l networks structures. 

In one variant of simulated annealing described by Metropolis et al. (1953), we 
initialize the system to some temperature To. Then, we pick some eligible change e at 
random, and evaluate the expression p = exp(A(e)/To). If p > 1, then we make the 
change e; otherwise, we make the change with probability p. We repeat this selection 
and evaluation process c~ times or until we make/3 changes. If we make no changes in c~ 
repetitions, then we stop searching. Otherwise, we lower the temperature by multiplying 
the current temperature To by a decay factor 0 < ~/< 1, and continue the search process. 
We stop searching if we have lowered the temperature more than 5 times. Thus, this 
algorithm is controlled by five parameters: To, c~,/3, ~/and 5. Throughout the process, we 
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retain the top 1 structures. To initialize this algorithm, we can start with the empty graph 
and make To large enough so that almost every eligible change is made, thus creating a 
random graph. Alternatively, we may start with a lower temperature, and use one of the 
initialization methods described for local search. 

Other methods for escaping local maxima include best-first search (Korf, 1993) and 
Gibbs' sampling (e.g., Madigan & Raftery, 1994). 

8. Evaluation Methodology 

Our methodology for measuring the learning accuracy of scoring metrics and search 
procedures is as follows. We start with a given network, which we call the gold-standard 
network. Next, we generate a database D by repeated sampling from the given network. 
Then, we use a Bayesian metric and search procedure to identify one or more network 
structures with high relative posterior probabilities or by some other criteria. We call 
these network stmctures the learned networks. Then, we use Equation 1 in conjunction 
with Equation 27 and the network scores to approximate p(CtD , ~), the joint probability 
distribution of the next case given the database. Finally, we quantitate learning accuracy 
by measuring the difference between the joint probability distribution of the gold-standard 
and p(C]D, ~). 

A principled candidate for a measure of learning accuracy is expected utility. Namely, 
given a utility function, a series of decisions to be made under uncertainty, and a model of 
that uncertainty (i.e., one ore more Bayesian networks for U), we evaluate the expected 
utility of these decisions using the gold-standard and learned networks, and note the 
difference (Heckerman & Nathwani, 1992). This utility function may include not only 
domain utility, but the costs of probabilistic inference as well (Horvitz, 1987). Unfortu- 
nately, it is difficult if not impossible to construct utility functions and decision scenarios 
in practice. For example, a particular set of learned network structures may be used for 
a collection of decisions problems, some of which cannot be anticipated. Consequently, 
researchers have used surrogates for differences in utility, such as the mean square error, 
cross entropy, and differences in structure. 

In this paper, we use the cross-entropy measure (Kullback & Leibler, 1951). In partic- 
ular, let p(U) denote the joint distribution of the gold-standard domain and q(U) denote 
the joint distribution of the next case to be seen as predicted by the learned networks 
(i.e., p(U]D, ~)). The cross entropy H(p, q) is given by 

• p ( z ~ , . . ,  z~) 
H(»,q) = ~ p(x~, . . ,xn)  , o g - -  q¢~,. : ,--LS~) (45) 

Low values of cross entropy correspond to a learned distribution that is close to the 
gold standard. To evaluate Equation 45 efficiently, we construct a network structure Bs 
that is consistent with both the gold-standard and learned networks, using the algorithm 
descfibed by Matzkevich and Abramson (1993). Next, we encode the joint distribution 
of the gold-standard and learned networks in this structure. Then, we compute the cross 
entropy, using the relation 
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q~ ~' • p ( x i  = k l n i  = j )  H(p,q) = ~ ~ ~ p ( x i  = l¢,rIi = j) l o g - -  (46) 
i=1 2=1 k=z q(xi klYii j) 

The cross-entropy measure reflects the degree to which the learned networks accurately 
predict the hext ease. In out experiments, we also use a structural-difference measure that 
reflects the degree to which the learned structures accurately capture causal interactions. 

n For a single learned network, we use the structural difference ~ i = l  6i, where 8i is the 
symmetrie difference of the patents of xi in the gold-standard network and the parents 
of xi in the learned network. For multiple networks, we compute the average of the 
structural-difference scores, weighted by the relative posterior probabilities of the learned 
networks. 

SDLC describe an alternative evaluation method that does not make use of a gold- 
standard network. An advantage of our approach is that there exists a clear correct 
answer: the gold-standard network. Consequently, out method will always detect over- 
fitting. One drawback of our approach is that, for small databases, it cannot discriminate 
a bad learning algorithm from a good learning algorithm applied to misleading data. 
Another problem with our method is that, by generating a database from a network, we 
guarantee that the assumption of exchangeability (time invariance) holds, and thereby bias 
results in favor of our scoring metrics. We can, however, simulate time varying databases 
in order to measure the sensitivity of out methods to the assumption of exchangeability 
(although we do not do so in this paper). 

In several of our experiments described in the next section, we require a prior network. 
For these investigations, we construct prior networks by adding noise to the gold-standard 
network. We control the amount of noise with a parameter 7. When ~] = 0, the prior 
network is identical to the gold-standard network, and as ~ increases, the prior network 
diverges from the gold-standard network. When ~ is large enough, the prior network and 
gold-standard networks are unrelated. Let (Bs, Bp) denote the gold-standard network. 
To generate the prior network, we first add 2 7 arcs to Bs, ereating network structure Bs1. 
When we add an arc, we copy the probabilities from B~ to Æpl so as to maintain the 
same joint probability distribution for U. Next, we perturb each conditional probability 
in Bp1 with noise. In particular, we convert each probability to log odds, add to it a 
sample from a normal distribution with mean zero and standard deviation 7, convert the 
result back to a probability, and renormalize the probabilities. Then, we create another 
network structure Bs2 by deleting 2tl arcs and reversing 2tl arcs that were present in the 
original gold-standard network. Next, we perform inference using the joint distribution 
determined by network (Bs1, Bp1) to populate the conditional probabilities for network 
(Bs2, Bp2). For example, if x has parents Y in Bs1, but x is a root hode in B~2, then we 
compute the marginal probability for x in B~z, and store it with hode x in B~z. Finally, 
we return (B~2, Bp2) as the prior network. 

9. Experimental Results 

We have implemented the metrics and search algorithms described in this paper. Our 
implementation is written in the C++ programming language, and runs under Windows 
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NT TM with a 90MHz Pentium processor. We have tested our algorithms on small 
networks (n _< 5) as well as the Alarm network shown in Figure la. Here, we describe 
some of the more interesting results that we obtained using the Alarm network. 

Figure 1 in the introduction shows an example learning cycle for the Alarm domain. 
The database was generated by sampling 10,000 cases from the Alarm network. The 
prior network was generated with r 7 = 2. The learned network was the most likely 
network structure found using the BDe metric with N / = 64, and t~ = 1/65, and local 
search initialized with the prior network. (The choice of these constants will become 
clear.) 

To examine the effects of scoring metrics on learning accuracy, we measured the cross 
entropy and structural difference of learned networks with respect to the Alarm network 
for several variants of the BDe metric as weil as the K2 metric. The results are shown in 
Figure 6. The metrics labeled BDe0, BDe2, and BDe4 correspond to the BDe metric with 
prior networks generated from the Alarm network with noise r/ = 0, 2, 4, respectively. 
In this comparison, we used local search initialized with a maximum branching and 
10,000-case databases sampled from the Alarm network. For each value of equivalent 
sample size N '  in the graph, the cross-entropy and structural-difference values shown in 
the figure represent an average across five learning instances, where in each instance we 
used a different database, and (for the BDe2 and BDe4 metrics) a different prior network. 
We made the prior parameter t~ a function of N'--namely,  ~c = 1/(N' + 1)--so that 
it would take on reasonable values at the extremes of N ~. (When N t = 0, reflecting 
complete ignorance, all network structures receive the same prior probability. Whereas, 
when N ~ is large, reflecting a high degree of confidence, the prior network structure 
receives a high prior probability.) When computing the prior probabilities of network 
structure for the K2 metric, we used Equation 42 with an empty prior network. 

The qualitative behaviors of the BDe metrics were reasonable. When r / =  0--that is, 
when the prior network was identical to the Alarm network--learning accuracy increased 
as the equivalent sample size N t increased. Also, learning accuracy decreased as the prior 
network deviated further from the gold-standard network, demonstrating the expected 
result that prior knowledge is useful. In addition, when 77 ¢ 0, there was a value of 
N '  associated with optimal accuracy. This result is not surprising. Namely, if N ~ is 
too large, Ehen the deviation between the true values of the parameters and their priors 
degrade performance. On the other hand, if N ~ is too small, the metric is ignoring 
useful prior knowledge. Furthermore, the optimal value of N '  decreased as r7 increased 
(N'  = 64 for ~ = 2; N '  = 16 for r] = 4). As expected, the equivalent sample size for 
which learning is optimal decreases as the deviation between the prior and gold-standard 
network structures increases. Results of this kind potentially can be used to calibrate 
users in the assessment of N ' .  

Quantitative results show that, for low values of N ' ,  all metrics perform about equally 
well, with K2 producing slightly lower cross entropies and the BDe metrics producing 
slightly lower structural differences. For large values of N ~, the BDe metrics did poorly, 
unless the gold-standard network was used as a prior network. These results suggest 
that the expert should pay close attention to the assessment of equivalent sample size 
when using the BDe metric. To provide a scale for cross entropy in the Alarm domain, 
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Figure 6. Cross entropy and structural difference of learned networks with respect to the Alarm network as 
a function the user's equivalent sample size N I. The metrics labeled BDe0, BDe2, and BDe4 correspond to 
the BDe metric with prior networks generated from the Alarm network with noise r/ = 0, 2, 4, respectively. 
Local search initialized with a maximum branching was applied to databases of size 10,000. Each data point 
represents an average over five learning instances. For all curves, the prior parameter ~ was set to 1 / ( N  ~ + 1). 
When computing the prior probabilities of network structure for K2, we used an empty prior graph. 
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Figure 7. Cross entropy of learned networks with respect to the Alarm network as a function of the user's 
equivalent sample size for the BDe4 and BDeu metrics using databases of size 100, 1000, and 10000. The 
parameters of the experiment are the same as those in Figure 6. 

note that the cross entropy of the Alarm network with an empty network for the domain 
whose marginal probabilities are determined from the Alarm network is 13.6. 

The effect of  database size is shown in Figure 7. As expected, the cross entropy of 
the learned networks with respect to the gold-standard network decreased as the database 
size increased. 

Our metric comparisons revealed one surprising result. Namely, for databases ranging 
in size from 100 to 10000, we found learning performance to be better using an uninfor- 
mative prior (BDeu) than that using the BDe metric with r~ > ~  4. This result snggests 
that, unless the user 's  beliefs are close to the true model, we are bettet oft  ignoring those 
beliefs when establishing priors for a scoring metric. 

In contrast, we found prior structural knowledge extremely useful for initializing search. 
To investigate the effects of  search initialization on learning accuracy, we initialized 
local search with random structures, prior networks for different values of % a maximum 
brancbing, and the empty graph. The results are shown in Figure 8. In this comparison, 
we used the BDeu metric with N / = 16, ~c = 1/17, and a 10,000-case database. We 
created 100 random structures by picking orderings at random, and then, for a given 

ordering, placing in the structure each possible arc with probabili ty ~c/(1 + ~). (This 
approach produced a distribution of random network structures that was consistent with 
the prior probability of network structures as determined by Equation 42 applied to an 
empty prior network.) 

The curve in Figure 8 is a histogram of the local maxima achieved with random- 
structure initialization. Prior networks for both q = 0 and r / =  4 produced tocal maxima 
that fell at the extreme low end of this curve. Thus, even relatively inaccurate prior 
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Figure 8. Cross entropy achieved by local search initialized with 100 random graphs, prior networks generated 
with different values of r/, a maximum branching, and the empty graph• The BDeu metric with N ~ = 16 and 

= 1/17 was used in conjunction with a 10,000-case database. 

knowledge of structure helped the search algorithm to find good local maxima. Also, the 
maximum branching led to a local maximum with relatively low cross entropy, suggesting 
that these structures--which are produced in polynomial t ime--can be a good substitute 
for a prior network. 

To investigate the effects of  search algorithm on learning accuracy, we applied several 
search methods to 30 databases of size 10,000. For each search method, we used the 
BDeu metric with N r = 16 and ~ = 1//17. The results are shown in Table 1. In The 
algorithm K2opt is CH's K2 search algorithm (described in Section 7.2) initialized with 
an ordering that is consistent with the Alarm network. The algorithm K2rev is the same 
algorithm initialized with the reversed ordering. We included the latter algorithm to 
gauge the sensitivity of  the K2 algorithm to variable order. Iterative local search used 
30 restarts where, at each restart, the current network structure was modified with 100 
random changes. (A single change was either an arc addition, deletion, or reversal.) 
The annealing algorithm used parameters To = 100, c~ = 400, f3 = 200, "7 = 0.95, and 
8 = 120. We found these parameters for iterative local search and annealing to yield 
reasonable learning accuracy after some experimentation. Local search, iterative local 
search, and annealing were initialized with a maximum branching. 

K2opt obtained the lowest structural differences, whereas K2rev obtained the highest 
cross entropies and structural differences, illustrating the sensitivity of the K2 algorithm to 
variable ordering. All search algorithms--except K2rev--obtained low cross entropies. 
Local search performed about as well K2opt with respect to cross entropy, but not as well 
with respect to structural difference. The structural differences produced by annealing 
were significantly lower than those produced by local search. Nonetheless, annealing ran 
considerably slower than local search. Overall, local search performed well: It was both 
relatively accurate and fast, and did not require a variable ordering from the user. 



LEARNING BAYESIAN NETWORKS 235 

Table 1. Cross entropy, structural difference, and learning time (mean zk s.d.) for various search algorithms 

across 30 databases of size 10,000. 

cross entropy structural difference learning time 
K2opt 0.026 :t: 0.002 3.9 4- 1.4 1.9 rain 
K2rev 0.218 ± 0.009 139.3 4- 1.7 2.9 rain 
local 0.029 4- 0.005 45.0 ± 7.8 2.1 rain 

iterative local 0.026+0.003 42.0 t 9.9 251 rain 
annealing 0.024 4- 0.007 19.5 ± 11.2 93 min 
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Figure 9. Cross entropy of learned networks with respect to the Alarm network as a function of the number 
of network structures used to represent the joint distribution. The BDeu metric with N ~ = 1 and n = 1 /2  
was applied to a 25-case database. Local search initialized with a maximum branching was used. The network 
structures used to represent the joint were those with the highest posterior probabilities. 

Finally, to investigate the effects of using more than one network structure to represent 
a joint distribution, we applied the BDeu metric with N t = 1 and ~ = 1/2 to a 25-case 
database. We searched for the network structures with the highest posterior probabilities 
using local search initialized with a maximum branching. The cross entropy of the 
joint distribution encoded by the 1 most likely structures with respect to the Alarm 
network as a function of  l is shown in Figure 9. The cross entropy decreased until 
i --- 4, at which point there was little additional improvement. For larger databases, the 
improvement was less. This result is not surprising, because given a large database, one 
network structure typically has a posterior probability far greater than the next most likely 
structure. Overall, however, we were surprised by the small amount of improvement. 

10. S u m m a r y  

We have described a Bayesian approach for learning Bayesian networks from a combi- 
nation of user knowledge and statistical data. We have described four contributions: 
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First, we developed a methodology for assessing informative priors on parameters for 
discrete networks. We developed our approach from the assumptions of parameter inde- 
pendence and parameter modularity made previously, as well as the assumption of likeli- 
hood equivalence, which says that data should not distinguish between network structures 
that represent the same assertions of conditional independence. This assumption is al- 
ways appropriate when learning acausal Bayesian networks and is often appropriate when 
learning causal Bayesian networks. Rather surprising, we showed that likelihood equiv- 
alence, when combined with the parameter independence and other weak assumptions, 
implies that the parameters of the joint space must have a Dirichlet distribution. We 
showed, therefore, that the user may assess priors by constructing a single prior network 
and equivalent sample size for the domain. We noted that this assessment procedure is 
simple, but not sufficiently expressive for some domains. Consequently, we argued that 
the assumptions of parameter independence and likelihood equivalence are sometimes 
inappropriate, and sketched a possible approach for avoiding these assumptions. 

Second, we combined informative priors from our construcfion to create the likelihood- 
equivalent BDe metric for complete databases. We note that our metrics and methods 
for constructing priors may be extended to nondiscrete domains (Geiger & Heckerman, 
1994; Heckerman & Geiger, 1995). 

Third, we described search methods for identifying network structures with high pos- 
terior probabilities. We described polynomial algorithms for finding the highest-scoring 
network structures in the special case where every node has at most one parent. For 
the case where a node may have more than one parent, we reviewed heuristic search 
algorithms including local search, iterative local search, and simulated annealing. 

Finally, we described a methodology for evaluating Bayesian-network learning algo- 
rithms. We applied this approach to a comparison of variants of the BDe metric and 
the K2 metric, and methods for search. We found that both the BDe and K2 metrics 
performed well. Rather surprising, we found that metrics using relatively uninformative 
priors performed as well as or better than metrics using more informative priors, unless 
that prior knowledge was extremely accurate. In contrast, we found that prior structural 
knowledge can be very useful for search, even when that knowledge deviates consider- 
ably from the true model. Also, we found that local search produced learned networks 
that were almost as good as those produced by iterative local search and annealing, but 
with far greater efficiency. Finally, we verified that learning multiple networks could 
improve predictive accuracy, although we were surprised by the small magnitude of 
improvement. 
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Appendix 

In this section, we prove Theorem 1 and compute the Jacobian JBso. To prove Theorem 1, 
we need the following definitions and preliminary results. In what follows we refer to 
Bayesian network structures simply as DAGs (directed acyclic graphs). An edge between 
x and y in a DAG refers to an adjacency between two nodes without regard to direction. 
A v-structure in a DAG is an ordered node triple (x, y, z) such that (1) the DAG contains 
the arcs x ---+ y and y +- z, and (2) there is no edge between x and z. 

TttEOREM 9 (Verma & Pearl, 1990) Two DAGs are equivalent if  and only if  they have 
identical edges and identical v-structures. 

LEMMA 1 Ler D1 and D2 be equivalent DAGs. Ler RD~ (D2) be the subset of arcs 
in D1 for which D1 and D2 differ in directionality. I f  _RDI(D2) is not empty, then 
there exists an arc in RD1 (D2) that can be reversed in D1 such that the resulting graph 
remains equivalent to D e  In particular, the following procedure finds such an edge. 
(Lot P~ = {u]u ---+ v C RDI(D2)}.)  

1. Perform a topologicaI sott on the nodes in D1 

2. Let y C D1 be the minimal node with respect to the sort for which Pv 7 £ ~ 

3. Let x E D1 be the maximal node with respect to the sort such that x E Pv 

The arc x ~ y in D1 is reversible. 

Proof :  Suppose x -+ y is not reversible. Then, by Theorem 9, reversing the arc either 
(1) creates a v-structure in the resulting graph that is not in D2, (2) removes a v-structure 
from D1 which is in D2, (3) creates a cycle in the resulting graph. 

Suppose reversing x ---+ y creates a v-structure. Then there taust exist an arc w ~ x 
in D1 for which y and w are not adjacent. The arc w --+ x must be in Rz)I (D2), lest 
the v-structure (w, x, y) would exist in D2 hut not D l .  This fact, however, implies that 
x would have been chosen instead of  y in step 2 above, because w E Px and x comes 
before y in the topological sort. 

The second case is impossible because a v-structure (x, y, v) cannot appear in both D1 
and D2 if  the arc between x and y have different orientations in D1 and D »  

Suppose reversing x -+ y creates a cycle in the resulting graph. This assumption 
implies that there is a directed path from x to y in D1 that does not include the edge 
from x to y. Let w -+ y be the last arc in this path. Because x ---+ y E RD1 (D2), w 
and x taust be adjacent in D l ,  lest D1 would contain a v-structure not in /92. Because 
there is also a directed path from x to w the edge between x and w taust be oriented 
as x -+ w, lest there would be a cycle in D l .  Because there are no directed cycles in 
D2, however, either x ---+ w or w --+ !1 taust be in RDI (D2). If x --+ w is in RD1 (D2), 
then w would have been chosen instead of y in step 2 above, because x E Pw and 
w precedes y in the sort. If  w ~ y is in RD1 (D2), then w would have been chosen 
instead of  x in step 3 above, because w E Pv and w comes after z in the sort. 
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THEOREM 1 Let D1 and D2 be two DAGs, and ÆD1,D2 be the set of edges by which 
D1 and D2 differ in directionality. Then, D1 and D2 are equivalent if and onIy if there 
exists a sequence of [RDI,D~ ] distinct arc reversals applied to DI with the foIlowing 
properties: 

1. After each reversal, the resulting graph is a DAG and is equivalent to D2 

2. After all reversals, the resulting graph is identical to Du 

3. I f  x -+ y is the next arc to be reversed the current graph, then x and y have the 
same parents, with the exception that x is also a parent of y 

Proof: The if part of the theorem follows immediately from Theorem 9. Now, let 
~c ~ y be an arc in D1 that was chosen for reversal by the method described in Lemma 
1. From the lemma, we know that after reversing this arc, D1 will remain equivalent to 
D »  Therefore, Condition 1 follows. Furthermore, each such edge reversal decreases by 
one the size of RDI,D~. Thus, Condition 2 follows. 

Suppose that Condition 3 does not hold. Then, there exists a node w ~ x in D1 
that is either a p a r e n t  o f x  or apa r en t  of y, but not both. I f w  ~ x is in Dl ,  then 
w and y must be adjacent in D2, lest (w, x, y) would be a v-structure in De but not 
Dl .  In Dl ,  however, w is not a parent of  y; and thus there must be an arc from y to 
w, contradicting that D1 is acyclic. If  w --+ y is in Dl ,  a similar argument shows that 
reversing x --+ y in D1 creates a cycle, which contradicts the result proven in Lemma 1. 

THEOREM 10 Let Bsc be any complete belief-network structure in domain U. 
Jacobian for the transformation from ~ u  to ~3s,~ is 

The 

n - 1  

JBsc : H H [OXi[Xl ..... ~i--1][~I~iq-17"J]--I (A.1) 
i=1 xl,...lxi 

Proof:  We proceed by induction using J~ to denote JBs~ for the n-variable case. 
When n = 1, the theorem holds trivially, because Ou = Oß ,c  and J1 = 1. For the 
induction step, let us assume that the complete belief-network structure has variable 
ordering X l , . . . , x , ~ + l .  First, we change variables from Oxl ..... x~+l to tgxn+ll~l ..... ~~~ U 

By definition, 0~~,..,x,~+~ = 0~~ ..... ~~, .0~,~+~E~l,...,x~. Thus, the Jacobian matrix consists 
n of {1-I~=x ri} block matrices of size r,~+l on the main diagonal, one for each state of  

the first n variables, of the form 

/ Ox~~+l=llzl,...,z,. Ozl,...~~~ 0 
O~~+l=21zl,..,x«~ 0 Ozi,...z~ 

x ~ r ~ + 1 - 1  t] - -0x l  xn --OXl, x I -- ~-~i:1 ~xn+I=r~[xl,...,xn 

0 
0 

• . . --~3~17...X n 
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The determinant of  this matrix is the Jacobian given below: 

B + l  H 0 ] <~+~-1 (A.2) X l l . . . I X n j  

X l ~ . , . I X n  

Next, we change variables from (~:~~ ..... z~ to (:)Xl LJ Ox2]x I U . . .  U ~~~~1~~ ..... ~~_~, with 
the Jacobian a:~ obtained from the induction hypothesis. The combined Jacobian for 
the transformation from O~~ ..... ~~+~ to 19:~~ U . . .  U @x~+~lXl ..... ~~ is J~+l = J~+l  " J~. 
Consequently, we have 

0rn+l = 

n n--i 

H [H OXi Xl,...,xi--1]]rn+l--i " 1--I H [OxilXl . . . . . . . .  1] [E;S/+1~j]-I 
X z , . . , 3 ; n  i=1 / : 1  X l , . . . , X i  

(A.3) 

Collecting terms O~~lx~,..,x~_ 1, we can rewrite Equation A.3 as 

&+t = InI I l  r° ~N~-~ [ x i l x l , . . . , x i - l ]  

i=1 2Cl~.. ~xi 

(A.4) 

where 

N:-I= (r~+l-1)H rj + I I  rj -i= 1 
j = i + l  j j={+~ j l r J  - 

(A.5) 

Substituting Equation A.5 into Equation AA completes the induction. • 
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Notation 

x, y, z , . . .  

X , Y , Z , . . .  
x =  ]¢ 

X = kx 
x \ Y  

U 
C 
D 

Dt 
p (x  = kx lY  = k y , ¢ )  

p(XlY,~)  

Bp 

qi 

~ s c  

v )  
OX=kxlY=ky 

OXIY=,~:y 

OxIY 
Or/ 

Oijk 
O{j 
Oi 

OBs 
p(OI~) 

N l 

Xi'jk 
N:j 

N~sk 
Nij 

Variables or their corresponding nodes in a Bayesian 
network 
Sets of variables or corresponding sets of nodes 
Variable x is in state k 
The set of variables X takes on state kx  
The variables in X that are not in Y 
A domain: a set of variables { x l , . . . ,  x~} 
A case: a state of some or all of  the variables U 
A database: a set of  cases {C1 , - . .  , C ~ }  
The first 1 - 1 cases in D 
The probability that X = kx given Y = ky  for a person 
with current state of information 
The set of probability distributions for X given all states 
of Y 
A Bayesian network structure (a directed acyclic graph) 
The probability set associated with Bs 
The parents of  xi in a Bayesian network structure 
The number of states of  variable xi 
The number of states of  Hi 
A complete network structure 
The hypothesis corresponding to network structure B~ 
The multinomial parameter corresponding to 
p(X = kx[Y = ky, ~) (kx and ky are often implicit) 
The multinomial parameters corresponding to the probability 
distribution p( X[Y = kv, ~) 
The multinomial parameters @xlY=kv for all states of ky 
The multinomial parameters corresponding to the joint 
probability distribution p(U[~) 

= Ox~=klri~= j 
7" i = %=l{0~jk} 
q~ = u j = ~ { e i ; }  

= u L I O  i 
The probability density of 0 given 
An equivalent sample size 
The Dirichlet exponent of Oijk (see Assumption 4) 

= Ek=l 
The number of  cases in a database where xi = k and Hi = j 

Ti 
= E k = l  Nij k 



LEARNING BAYESIAN N E T W O R K S  241 

Notes 

1. We assume this result is well known, although we haven't found a proof in the literature. 

2. This prior distribution cannot be normalized, and is sometimes called an improper prior. To be more 
precise, we should say that each exponent is equal to seine number close to zero. 

3. Whenever possible we use CH's notation. 

4. One technical flaw with the definition of Bs  ~ is that hypotheses are not mutually exclusive. For example, 
in our two-variable domain, the hypotheses B~u and B h both include the possibility Oy = Ovl z. This X ~ y  

flaw is potentially troublesome, because mutual exclusivity is important for our Bayesian interpretation 
of network learning (see Equation 1). Nonetheless, we assume the densities p(OB~ Iß~,  ~) are bounded. 
Thus, the overlap of hypotheses will be of measure zero, and we may use Equation 1 without modification. 
For example, in our two-binary-variable domain, given the hypothesis t3~~v, the probability that B~v is 

true (i.e., Oy = Ovlz) has measure zero. 

5. Using the same convention as for the Dirichlet distribution, we write p(OU IBm, ~) to denote a density 
over a set of the nonredundant parameters in @u.  

6. Actually, as we have discussed, B h includes the possibility that x and y are independent, but only with 

a probability of measure zero. 
7. These characterizations of parameter independence and likelihood equivalence, in the eontext of causal 

networks, are simplified for this presentation. Heckerman (1995) provides more detailed characterizations. 
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