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Axioms and Algorithms for Inferences
Involving Probabilistic Independence*

DAN GEIGER, AZARIA Paz', AND JUDEA PEARL

Cognitive Systems Laboratory, Computer Science Department,
Los Angeles, California 90024-1596

This paper offers an axiomatic characterization of the probabilistic relation “X is
independent of Y (written (X, Y)),” where X and Y are two digjoint sets of
variables. Four axioms for (X, Y) are presented and shown to be complete. Based
on these axioms, a polynomial membership algorithm is developed to decide
whether any given independence statement (X, Y) logically follows from a set T of
such statements, ie., whether (X, Y) holds in every probability distribution that
satisfies Z. The complexity of the algorithm is O(|Z] - k% + |Z| -n), where |Z} is the
number of given statements, » is the number of variables in £ U {(X,Y)},and k is
the number of variables in (X, Y). © 1991 Academic Press, Inc.

1. INTRODUCTION

Consider a collection of information sources, each reflecting a different
aspect of some underlying probabilistic phenomenon. These sources can be
regarded as a set of random variables, governed by an unknown proba-
bility distribution, some of which are dependent and some independent. In
this paper, we are concerned with the following problem: Assume we know
that some groups of variables are mutually independent, either by statistical
analysis or by conceptual understanding of the underlying phenomenon;
we need to infer new independencies without resorting to additional
measurements or expensive numerical analysis.

We formalize this question as follows: Let an (independence) statement be
a sentence of the form (X, Y), where X = {xl,. s X} and Y={y, ., y,}
are disjoint finite sets of variables. The meaning of (X, Y) is that Xand Y
are probabilistically independent, namely,

P(X, ¥)=P(X) P(Y)
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which is a short-hand notation for the equality

Pr{x,=ay, ... X,=a,, Y1 =0y, s Y=}
=Pr{x;=a;, o X,=a,) - Pr{yi =5y, Vo=b,}

for every choice of ay, .., a,, by, ... b, from the domains of x,, .., X,,
V1, . Ym» respectively. We often refer to independence statements as inde-
pendencies and to their negation as dependencies. We say that a statement
o is logically implied by a set of statements ¥ iff every distribution that
satisfies T satisfies o as well. We ask: Is the statement o = (X, Y) logically
implied by a given set I of such statements, each characterized by a
different pair of subsets X" and ¥'?

The answer is given in two steps. First, (in Section 2), we characterize
the relation of independence by the following inference rules, considered as
axioms: '

Trivial independence (X, &) (l.a)
Symmetry (X, Y) - (Y, X) (1.b)
Decomposition (X, YuZ)—-(X,7) (1.c)
Mixing (X, V)& (XvY,Z)—(X,YuZ) (Ld)

These axioms clearly hold for all distributions and therefore are sound. For
example, to prove (l.d), we observe that P(X,Y)=P(X)-P(Y) and
P(X,Y,Z)=P(X,Y)-P(Z) imply that P(X,Y,Z)=P(Y) - P(X)-P(Z)
Moreover, summing over X yields P(Y, Z)=P(Y)-P(Z), hence
P(X, Y, Z)=P(X) - P(Y, Z) which establishes the right-hand side of (1.d).
We show that these axioms are also complete, ie., capable of deriving by
repeated applications all independencies that are logically implied by the
input set of independencies.

The second step of our solution is a membership algorithm that
efficiently answers whether a statement ¢ is a member of the closure cl(X)
of £ under axioms (1). In light of the soundness and completeness results,
cecl(X) iff ¢ holds in every distribution that satisfies X. This step is
covered in Section 3. Section4 extends the results to the problem of
deciding consistency: Given a set of independence statements mixed with
dependence statements, decide if the set is consistent, i.e., if there exists a
probability distribution that satisfies all the statements simultaneously. We
show that the consistency problem can be translated into a sequence of
membership problems.

Similar problems of membership and axiomatic characterization are
treated in the literature on database dependencies, for example (Beeri et al.,
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1977; Fagin, 1977; Beeri, 1980; Fagin, 1982; Sagiv and Walecka, 1982). Our
notations and definitions were particularly influenced by (Beeri et al., 1977;
Fagin, 1977). A survey on database dependency theory can be found in
(Rissanen, 1978; Fagin and Vardi, 1986; Vardi, 1988). An extension of this
work to conditional independence has been developed in (Geiger and Pearl,
1987; Pearl, 1988; Pearl et al., 1988; Geiger, 1990; Geiger et al., 1990).

2. AXIOMATIC CHARACTERIZATION

The following symbols are used: ¢ for a statement, & for a set of state-
ment, A for a set of axioms, and P for a class of distributions. For example,
the class of all probability distributions will be denoted by PD, the class of
normal distributions by PN, and the class of distributions over bi-valued
variables by PB. A distribution in PN is characterized by the multivariate
density function of the form

1

1 - 1
BT P37 A

f(X)=

where X is a vector of variables, m= E[X] is a vector of averages, and
A=E[(X —m)(X—m)"] is the covariance matrix. A distribution P(X) in
PB is any joint distribution of the set of variables X in which each x,e X
has a domain of size two (e.g,, {0, 1}). We assume variable symbols are
drawn from a finite set U= {u, u,, ..}. We use the letters x, y, z, u, v, w,
possibly subscripted, for variables, and X, Y, Z, U, V, W for sets of
variables. The set union symbol is often dropped and XY is written instead
of XuY.

DEFINITION. ¢ is logically implied by X, denoted L k= p o, iff every
distribution in P that satisfies £ also satisfies . ¢ is said to be derivable
from Z, denoted X |-, o iff o el (¥), ie., there exists a derivation chain
0y,.. 0,=0 such that for each ¢, either g, ¥, or g; is derived by an
axiom in A from the previous statements. ’

DEFINITION. A set of axioms A is sound in P iff for every statement ¢
and every set of statements X

if £}, 0 then £ Epo.
The set A is complete for P iff
fXEpothenX |-, o
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PROPOSITION 1. Axioms (1) are sound for PD (ie., hold for all distribu-
tions).

The proof is achieved by induction on the length of a derivation.

PROPOSITION 2 (After Fagin, 1977). A set of axioms A is complete iff for
every set of statements X and every statement odcl(X) there exists a
distribution P, in P that satisfies £ and does not salisfy o.

Proof. This is the contra-positive form of the completeness definition, if
c¢cl, (L) (e, EH oo0)then ZHpo |

TuroreM 3 (Completeness). Let X be a set of statements, and let cl(X)
be the closure of X under the following axioms:

Trivial independence (X, D) (l.a)
Symmetry (X, V)= (Y, X) (1.b)
Decomposition (X, YW)—-(X,Y) (1.c)
Mixing (X, Y) & (XY, W)— (X, YW) (1.d)

Then for every statement o= (X, Y)¢cl(X) there exists a probability
distribution P, that satisfies all statements in cl(X) but does not satisfy o.

Remark. The sets X, Y, Z, and W may be empty (e.g., the derivation
of (gf, YW) from (¥, Y) and (Y, W) by the mixing axiom is permitted
although (¥, YW) can be derived directly by axiom (l.a)).

Proof. Let o=(X, Y) be an arbitrary statement not in cl(X). Without
loss of generality we assume that for all non-empty sets X "and Y’ obeying
Y'cX, Y cVY, and X'Y # XY we have (X', Y')ecl(X). A statement obey-
ing this property is called a minimal statement. If o= (X, Y) is not a mini-
mal statement then we can always find a minimal statement ¢’ = (X", Y')
not in ¢l(X), where X' < X and Y’ =7, by deleting elements of Xand ¥
until we obtain the desired property or until both X" and Y’ become
singletons, in which case, due to the trivial independence axiom (l.a), ¢’ 1s
a minimal statement. For each such o', we construct P, that satisfies ¢l(X)
and violates ¢'. Due the decomposition axiom (l.c), which holds for all
distributions, we know that any distribution that violates ¢’, violates ¢ as
well. In particular, P, violates ¢ (while satisfying ¢l(X)) and therefore
satisfies the conditions of the theorem.

Let o=(X,Y) be a minimal statement, where X= {X1, X0, w0 X1,
Y={31s V2» e Ym}» and let Z={z,, 25, ., z} stand for the rest of the
variables, namely, U— XY. Construct P, as follows: Let all variables,
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except x;, be independent binary variables with probability & for each of
their two values (e.g., fair coins), and let

Clearly, P, has the product form:

P(XYZ)=P(XY) ] P,(z,). (2)

zieZ

We first show that ¢ = (X, ¥) does not hold in P,. Instantiate x, to one
and all other variables in XY to zero. For this assignment of values we
have

P(x,--x, )’1"‘ym):7éPa(x1"'xl)'Pa(J’1"'ym) (3)

because the LHS of Eq. (3) is equal to 0, whereas the RHS consists of a
product of two non-zero quantities.

It is left to show that every statement in cl(Z) holds in P,, or
equivalently, that for an arbitrary statement (¥, W) we have

(V, Wyec(Z)= P (V, W)=P,(V)-P(W).

This is done by examining the statement (¥, W) for every possible
assignment of variables to the sets J and W and showing that either
PV, W)=P,(V)-P,(W) or that (V, W)¢cl(X).

Case 1. Either ¥ or W contains only elements of Z. By Eq. (2), we
obtain P,(V, W)=P (V). P,(W).

Case 2. Both V and W include an element of XU Y.

Case2.1. VU W does not include all the variables of X u Y. To verify
whether (V, W) holds in P, amounts to checking this statement in the
projection of P, on the set VU W. Since the probability of every value
assignment to a proper subset S & XU Y is ()%, this projection assumes
the product form [T7,..,, s P,(w,). Hence, again, P_(V, Wy=P_(V)-
P(W).

Case 2.2. VU W includes all elements of X U Y. This is the only case
for which (¥, W) is definitely not in cl(X). Let V=X'Y'Z', W=X"Y"Z",
where X=X'X", Y=Y'Y", and Z'Z" = Z. We continue by contradiction.
Assume (V, W) = (X'Y'Z', X"Y"Z") is in cl(Z). cl(T) is closed under
decomposition. Therefore, (X'Y’, X"Y")ecl(X). To reach a contradiction
we show that this statement implies that ¢ must have been in cl(¥),
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contradicting our selection of . The proof uses the mixing and symmetry
axioms to infer (X'X", Y'Y") (ie., o) from (X'Y’, X"Y") by “pushing” all
the X’s to one side and all ¥’s to the other side. The following is a deriva-
tion of .

First, (X', Y') belongs to cl(X) because (X, ¥) is a minimal statement.
Due to the mixing axiom

(X/’ Y/) & (X/ Y/, X/f YN) N (X/, Y/XN Yl/ ).

We conclude that (X', X" Y)ecl(Z). Due to symmetry (X"Y, X")ecl(X) as
well. (X7, Y)ecl(X) because ¢ is a minimal statement and therefore (by
symmetry) also (Y, X”) is a member of cl(Z). Using the mixing axiom
again, we obtain

(Y, X") & (YX", X') = (Y, X'X")

which leads to the conclusion that (Y, X)ecl(Z), and by symmetry that
(X, Y) is in cl(¥), a contradiction (note that the derivation of ¢ remains
valid when some of X', X", Y’, and Y" are empty, as long as X' = X'X" and
Yy=Y7Y") 1§

Theorem 3 implies that the problem of verifying X k=, o is decidable
because, for a finite set of variables U, the process of generating cl(X) by
successive application of axioms (l.a) through (1.d) will always terminate.
We note that the construction of P, uses bi-valued variables, therefore,
axioms (l.a) through (1.d) are complete also in PB5, namely a statement is
derivable iff every distribution in PB that satisfies X also satisfies o.

TueoreM 4 (Completeness in PN) (Geiger and Pearl, 1987). Let X be
a set of statements, and let cl(X) be the closure of L under the following
axioms:.

Trivial independence (X, D) (4.a)
Symmetry (X, Y)-> (Y, X) (4.b)
Decomposition (X, YW)— (X, Y) (4.c)
Composition (X, V)& (X, W)= (X, YW) (4.d)

Then there exists a normal distribution P € PN that satisfies all statements in
cl(X) and none other.

Axioms (4) are stronger than axioms (1) since the mixing axiom can be
derived from axioms (4), but composmon cannot be derived from axioms
(1). Composition, clearly does not hold in all distributions. For example,



134 GEIGER, PAZ, AND PEARL

letting x and y be the outcomes of two fair coins and z=x+ y (mod 2)
yields a distribution where z is independent of each coin separately, yet it
is completely determined by the joint outcome of x and y. However, com-
position holds for every normal distribution and Theorem 4 shows that
adding this property is sufficient to render the axioms complete for PN.
For normal distributions the membership algorithm is trivial; (V, W) is
logically implied by X iff for each v,e I and w;€ W there exists a statement
(X, ¥) in X such that v; appears in X and w; appears in ¥ (or vice versa,
w;e X and v,e Y); its complexity is O(n?-|Z|). The next section provides
a membership algorithm for axioms (1.a) through (1.d), having similar
complexity.

3. THE MEMBERSHIP ALGORITHM

The following notation is employed. ¢ and y denote single statements, T
and T sets of statements, and s a set of elements (variables). y = (X, Y) is
trivial if either X or Y is empty. The notation span(y) stands for the set of
elements represented in a statement 7y, and similarly, span(I’) denotes the
set of elements represented in all the statements of I; for example,
span({(x;, x5), (x;, x3)}) is {xy, x5, x3}. The projection of y on s, denoted
y(s), is the statement derived from y by removing all elements not in s
from vy, eg, if y=(xx,%;, x4x5) then 7(x;x,x;)=(x,%,%5, &) and
7(x1X3X4X6) = (X, X3, X4). Similarly, the projection of T on s, denoted I'(s),
stands for {y(s)|yeI'}. The number of elements appearing in y is denoted
by |yl and is called the size of y. The membership algorithm, presented
below, uses the procedure Find to answer whether a statement o is
derivable from Z by axioms (1.a) through (1.d).

ALGORITHM MEMBERSHIP.
Procedure Find (Z, o):

1. X' :=X(span(g)) {¥’ is the projection of £ on the variables of the
target statement o}

2. 1If o is trivial, or ¢ (or its symmetric image) belongs to £’ then set
Find(%, ¢) :=True and return.

3. Else if for all nontrivial ¢'eX’, span(c’)#span(c) then set
Find(X, o) := False.

4. Else there exists a statement ¢'e€ X’ such that span(c¢’)=span(o),
and up to symmetry, ¢’ = (4P, BQ) and ¢ = (AQ, BP), where one of
the sets 4, B, P, Q may be empty (if several such ¢’ exist, then
choose one arbitrarily).
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Set g, 1= (A4, P), ,=(B, Q)
Find(Z, o) := Find(X', 0,) A Find(X, g5).
return.
Begin {Membership }
Input(X, o)
Print Find(%, o)
End.

We will first show that the algorithm is correct and then prove its
complexity.

-

LEMMA 5. E b ¢ iff ¥ o, where &' =X(s) and s = span(o).

Proof. Assume that |- o. Then there is a derivation chain for o,
Y1y Va2, - V& With each y, either in ¥, or derived from previous statements
in the chain by one of the axioms. Consider an arbitrary statement y; in the
chain. If y, is derived from y,, k<j by symmetry or decomposition, then
v,(s) is derived from 7y,(s) by symmetry or decomposition, respectively.
Similarly, if 7, is derived from y, and 7, by the mixing axiom, then y;(s) is
derived from 7.(s) and 7,(s) by the mixing axiom. It follows that
() -+ -7,(s) is a derivation chain for o =0(s) in ' =X(s).

Assume now that ¥’ o, then clearly X |- o, because all the statements
in ¥ can be derived from statements in X by decomposition. §

LEMMA 6. For any nontrivial statement 6, &' =0 only if there is a state-
ment ¢’ € X' such that span(c) = span(s’).

Proof. The span of any statement in X/ is included in, or equal to, the
span of ¢. If no statement in X has the same span as the span of ¢, then
the derivation of ¢ is impossible; an inspection of the axioms in (1) shows
that no axiom can add variables to the span of a derived statement. |

Lemma 5 shows that to derive a statement ¢ from X one may start,
without loss of generality, by projecting all statements in £ on the span of
. Thus justifies Step 1 and 2 of the procedure used by the algorithm. Step 3
stems from the fact that if there exists no statement ¢’ with the same span
as ¢, then by Lemma 6, ¢ cannot be derived. Hence, Find(Z, o) is correctly
set to False. Step 4 is justified by Lemma 7 and Theorem 8.

LemMa 7. Let o =(AQ, BP), ¢’ = (AP, BQ), 6, = (4, P), 0, = (B, Q) be
statements. If o' € cl(E) then o ecl(E) iff o,ecl(E,) and a,€cl(X,), where
T, = Z(span(a,)) (notice that o, o', 0, and ¢, are defined as in Step 4 of
Procedure Find).

Proof. If o' ecl(X), o,ecl(X)) i=1, 2, then ¢ can be derived as follows:
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(AP, BQ)=0"; (4, P)=0,; (B, Q)=0,
(4, PBQ): Apply the mixing axiom (1.d) on ¢, and ¢’
(i) (APB, Q): Apply the mixing and decomposition axioms (1.b),
(1.d) on ¢, and ¢’
(PB, Q): Apply the decomposition axiom (1.c) on (iii)

(AQ, BP)=0: Apply the symmetry, decomposition, and mixing
axioms (1.b), (1.c), (1.d) on (ii) and (iv).

If o ecl(X) then let y,, y,, ..., o =0 = (AQ, BP) be a derivation chain for ¢
in X. Let s =span((g,)). Then y,(s), y5(s), ..., y(s) =0, = (4, P) is a deriva-
tion chain for ¢, in 2. Thus, ¢, e cl(X,). Similarly, a derivation chain for
o, can be constructed. §

Lemma 7 shows that the selection of ¢’ in Step 4 can be made arbitrarily
because any selection provides a necessary and sufficient means to check
whether ¢ belongs to ¢l(X).

THEOREM 8. The procedure in the algorithm halts and when it halts
Find(Z, ) = true iff oecl(X).

Proof. Every time the algorithm passes through Step 4 the size of the
statements involved strietly decrease. If it did not halt before, it will halt
when the size of the two statements have reached the value 2 (at Step 2
or 3). We show correctness by induction on the size of ¢. If |¢| =1 then ¢
is trivial, cecl(X), and Find(ZE, o)=true. If |o|=2 then cecl(X) iff
Find(X, o) = true as follows from Steps 2 and 3 of the algorithm.

Assume that the theorem holds for all |y| <k and let ¢ be a statement
such that |o| =k and o= (AQ, BP). Then Find(L, ¢)=true iff (by the
definition of Step 4) Find(X', ¢;) = true and Find(¥’, ¢,) = true iff (by the
definition of Step'l) Find(ZX, ¢,)=true and Find(X,, 0,)=true, where
L,=ZX(span(o,)), respectively, iff (by induction) a,ecl(X;) i=1,2 iff (by
Lemma 7) cecl(X). |

Next we analyze the time complexity. We measure the complexity in
terms of basic operations of two types: comparison of two statements and
a projection of a statement. Both operations are bounded by n, the number
of distinct variables in Zu {o}. Let Cost(k) be the number of basic opera-
tions needed to solve a size k& problem, where k = |o| and assume (initially)
that span(c) = span(X). By Step 4, Cost(k) must satisfy the equation:

Cost(k) < Cost(k,) + Cost(k,) + | Z,

where k, +k,=k, k,=]0,|, and k, = |g,|. The solution to this equation is
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O(|X| -k) measured in basic operations. Adding the cost of projecting £
over the variables of o which is O(|Z]| - n), yields the theorem below.

THEOREM 9. The complexity of the membership algorithm s
O(|Z| - k* +|E| - n) (which is O(|E| -n?), since k <n).

Remarks. 1. 1t is reasonable to assume that the bound is pessimistic at
least in its |X| part, since as the algorithm proceeds the number of
statements in £’ decreases.

2. The algorithm can be slightly modified so as to produce a deriva-
tion chain for ¢ if o e cl(X), whose length is O(k).

3. The algorithm can be expanded into a polynomial algorithm
(provided that |X|, and |T'| are polynomial) for the following problems:

a. Given Z and I, is cl(E)=cl(T'), or is c(Z) = cl(T')?

b. Minimize the size of £ while preserving c¢l(X): To solve this
problem start with a maximal size statement and probe all
statements derivable from it. In each step add an additional
statement in a non-increasing order (by size) that has not been
previously probed, and probe all statements derivable from the
augmented set.

4. EXTENSIONS

In this section, we show that probabilistic independence enjoys an
‘Interesting property known in the literature as having Armstrong models.
The concept of Armstrong models has evolved in the theory of relational
databases and has been stated in rather general terminology that makes it
applicable to probabilistic independence (Fagin, 1982). We will use this
property to show that axioms (1) characterize the independence relation
in a stronger sense than that defined in Section 2. We will employ this
characterization to check whether a given mixture of independencies and
dependencies is consistent.

Fagin’s general setting consists of a class of models (which in our case is
a class of probability distributions), a class of sentences & (for our
purposes independence statements) and a relationship Holds that states
whether a sentence holds in a given model. Holds(P, o) means that ¢ holds
for P or that P satisfies 0. We say that ¢ is a logical consequence of X,
written £ =p o, if every model that satisfies the set of sentences X satisfies
the sentence o as well. Z* 2 {¢|X =5 o}. A set of sentences I is consistent
if there exists a model that satisfies every sentence in L.

TaeoreM 10 (Fagin, 1982). Let & be a set of sentences. The following
properties of & are equivalent:
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(a) Existence of a faithful operator. T here exists an operator (X) that
maps nonempty families of models into models, such that if ¢ is a sentence
in & and (P, iel) is a nonempty family of models, then o holds for
® (P, iel) if and only if ¢ holds for each P;.

(b) Existence of Armstrong models. Whenever £ is a consistent sub-
set of & and L* is the set of sentences in S that are logical consequences
of L, then there exists a model (an “Armstrong model”) that obeys L* and
no other sentences in &,

| (c) Splitting of disjunctions. Whenever L is a subset of & and
{0,211} is a nonempty subset of &, then LV {o:iel} if and only if
there exists some i in I such that & = o,.

Fagin provides several applications for his theorem and this paper
provides an additional one. We first show the existence of a faithful
operator for probabilistic independence. We note that while the theorem
holds for any cardinality of the index set I, we use it only for finite
nonempty I

TueorEM 11. Let {P,|i=1---n} be a finite set of distributions. There
exists an operation Q) that maps finite sets of distributions to distributions
such that for each independency o,

o holds for ® {P,|i=1---n} iff ¢ holds for every Py, i= 1.--n. (5

We shall construct the operation () using a binary operation &’ such
that if P=P,®’ P, then for every independence statement g we obtain-

¢ holds for Q' P, iff ¢ holds for P, and for P,. (6)

The operation & is recursively defined in terms of &’ as follows:
X {Pi“:l“‘”}=((P1®/P2)®/ Py)® - P,).

Clearly, if ®' satisfies Eq. (6), then @ satisfies Eq. (5). Therefore, it suf-
fices to show that X’ satisfies (6).

Let P, and P, be two distributions sharing the variables xi, .., x,.
Let Ay, .., A, be the domains of x, .., X, in P, and let oy, .., %, be an
instantiation of these variables. Similarly, let By, .., B, be the domains of
Xy, X, in P, and By, .., B, an instantiation of these variables. Let the
domain of P=P,®' P, be the product domain 4, By, .., A, B, and denote
an instantiation of the variables of P by a8, ..., &,B,. Define P, ®' P, by
the following equation:

P(oyBr, 22 v )= Piloty; dps e %,) Pa(Bys Bas s B)-
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The proof that P satisfies Eq. (5) can be found in (Geiger and Pearl, 1987).
It follows from the basic definition of independence and can be extended to
conditional independence as well.

Theorem 10 suggests two alternative formulations of Theorem 11.
Part (b) states that given a set of independence statements X, there exists
a distribution that satisfies exactly all statements that logically follow from
¥ and none other (note that any set of independence statements is consis-
tent, which is a requirement of part (b)). Part (c) states that to check
whether a disjunction of statements logically follows from X, it suffices to
check each disjunct separately. Interestingly, if the class of models is taken
to be the class of normal distributions then the construction of &) is not
adequate because ® {P;|i=1-.-n} is not a normal distribution. However,
it is possible to define another faithful operator P= @ {P,|i=1---n} for
normal distributions as follows: For each pair of variables x, y, let the
correlation factor p,, in P be zero iff p, is zero in every P, i=1---n. All
other correlation factors are assigned a non-zero quantity p small enough
to assure that the covariance matrix of @ P, is positive definite. Finding
a similar operation for PB remains an open problem.

We now apply Theorem 11 to show that axioms (1) characterize
probabilistic independence. The proof repeats the argument that derives
part (b) from part (a) in Theorem 10.

THEOREM 12 (Characterization of independence). For every set of
statements % closed under axioms (1.a) through (1.d) there exists a distribu-
tion P such that for each independency o,

o holds for P iff cEL

Proof. By Theorem 3, for each o ¢ L there exists a distribution P, that
satifies £ and does not satisfy ¢. Let P=® {P,|o¢L}. The distribution
P is well defined because the sel of all statements that use a finite set of
variables U is finite. Due to Eq. (5), P satisfies all statements in X and none
other; hence P satisfies the requirements of the theorem.

The immediate consequence of these theorems is that axioms (l.a)
through (1.d) are powerful enough to derive all disjunctions of inde-
pendence statements that are logically implied by a given set of such
statements and not merely single statements as advertized in Section 3 (see
part (¢) of Theorem 10).

Another application of Theorem 11 is the reduction of the consistency
problem to a set of membership problems.

DEFINITION. A set of dependencies £~ and a set of independencies £+
are consistent iff there exists a distribution that satisfies Z* U X ™. The task
of deciding whether a set is consistent is called the consistency problem.
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The following algorithm answers whether £* WX~ is consistent: For
each member of £~ determine, using the membership algorithm, whether
its negation logically follows from L. If the answer is negative for all
members of L7, then the two sets are consistent; otherwise they are
inconsistent.

The correctness of the algorithm stems from the fact that if the negation
of each member o of £~ does not follow from L™, i.e., each member of £~
is individually consistent with £*, then there is a distribution P, that
realizes X and —1¢. The distribution P=® {P,| 7o €L~} then realizes
both £* and X7 therefore the algorithm correctly identifies that the sets
are consistent. In the other direction, namely, when the algorithm detects
an inconsistent member of £, the decision is obviously correct.
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