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Optimizing Exact Genetic Linkage Computations

MA’AYAN FISHELSON and DAN GEIGER

ABSTRACT

Genetic linkage analysis is a challenging application which requires Bayesian networks
consisting of thousands of vertices. Consequently, computing the probability of data, which
is needed for learning linkage parameters, using exact computation procedures calls for an
extremely efficient implementation that carefully optimizes the order of conditioning and
summation operations. In this paper, we present the use of stochastic greedy algorithms
for optimizing this order. Our algorithm has been incorporated into the newest version of
SUPERLINK, which is a fast genetic linkage program for exact likelihood computations in
general pedigrees. We demonstrate an order of magnitude improvement in run times of
likelihood computations using our new optimization algorithm and hence enlarge the class
of problems that can be handled effectively by exact computations.
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1. INTRODUCTION

GENETIC LINKAGE ANALYSIS IS A USEFUL STATISTICAL TOOL for mapping disease genes and for asso-
ciating functionality of genes with their location on the chromosome. It is usually used as the first
step when searching for disease genes. See, for example, Boerkoel et al. (2002), Bu et al. (2002), and
Feng et al. (2002). The aim of this approach is to find the rough location of a disease gene relative to
a map of genetic markers, whose positions are already known. The main principle of linkage analysis
is that loci which are in close proximity on the chromosome tend to stick together when passed on to
offsprings. Thus, if some disease is often passed to offsprings along with a specific marker, then it can
be concluded that a gene which is responsible for the disease is located close on the chromosome to that
marker. For more details on genetic linkage analysis, consult Terwilliger and Ott (1994), Lange (1997), or
Ott (1999).

Two main approaches to computing pedigree likelihood exactly are Elston—Stewart (Elston and Stewart,
1971) and Lander—Green (Lander and Green, 1987; Kruglyak et al., 1995, 1996). Both algorithms are
variants of variable elimination methods that use different strategies to find an elimination order. The
Elston—Stewart algorithm “peels” one nuclear family after another, whereas the Lander—Green algorithm
“peels” one locus after another. Other intermediate approaches, such as peeling one individual after another
or several individuals at a time, peeling several nuclear families at a time, or peeling by haplotypes instead
of genotypes, have also been suggested (Cannings et al., 1978; Thomas, 1986; Harbron and Thomas,
1994).
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In Fishelson and Geiger (2002), we propose a new algorithm to computing pedigree likelihood exactly
and implement it in a computer program called SUPERLINK. This algorithm combines and generalizes
the previous approaches by using the framework of Bayesian networks as the internal representation of
linkage analysis problems. Using this representation enables efficient handling of a wide variety of linkage
problems, by choosing the elimination order automatically according to the linkage problem at hand. It has
been shown in Fishelson and Geiger (2002) that SUPERLINK V1 outperforms leading linkage software with
regard to speed and memory requirements. The main computational step is computing sums of products of
high dimensional probability tables. The order in which the sums and products are performed has a large
impact on both the time and memory requirements of the computations. In SUPERLINK V1, a simple greedy
algorithm was used to determine this order.

In this paper, we define a refined optimization problem behind the main computational step and present a
stochastic greedy algorithm as a heuristic to solving this problem. The stochastic greedy algorithm has been
incorporated into the newest version of SUPERLINK (V1.1) reported herein. We present the experimental
results of this optimized version of SUPERLINK and compare it to the previous version (v1). As can be seen
from the experimental results, we often attain orders-of-magnitude speed-up in run times on the tested
datasets comprising of 100—400 individuals and 10-20 loci. No other linkage program can perform these
exact likelihood computations.

The rest of the paper is organized as follows. Section 2 elaborates on definitions and methods for Bayesian
networks, which are the basis for efficient likelihood computations in linkage analysis. Section 3 defines
the optimization problem and describes two greedy algorithms for approximately solving it. Section 4 gives
a brief description of the program SUPERLINK. Experimental results are reported in Section 5. Comparison
to other algorithms is discussed in Section 6. Finally, Section 7 summarizes our conclusions.

2. BAYESIAN NETWORKS

A Bayesian network, denoted by (G, P), is a directed acyclic graph G, where each vertex v =1...n
corresponds to a discrete variable X,, and each directed edge represents a conditional dependency between
the variables it connects (Pearl, 1988; Lauritzen, 1996). The probability distribution for each variable X,
is conditional upon the variables in Pay, which is defined as the set of vertices from which there are edges
leading into v in the graph. The joint probability distribution P of a full assignment x1, ..., x, to variables
X1, ..., X, is the product of these conditional probabilities. In other words, P(X| = x1,..., Xy = x) =
[T)_; P(Xy, = x,|Pay = pay), where pay is the joint assignment {x;|X; € Pay} to the variables in Pay.
From here on, we will use the notation P(y|z) as an abbreviated form of P(Y = y|Z = z) for any sets of
variables Y and Z. For example, the joint probability could be rewritten as

P(xi,...ox) =[] P(xy | pay). ()

v=1

Note that in the above definition, and throughout this paper, we use capital letters for variable names
and lower-case letters to denote specific values taken by those variables. Sets of variables are denoted by
boldface capital letters, and assignments of values to the variables in these sets are denoted by boldface
lower case letters.

We define the inference problem as follows. The input is a Bayesian network along with a subset
of vertices E. The output is the probability table P(E = e) for a given disjoint subset of variables
E C {X1,..., Xn}.

Suppose that X1, ..., Xy are the variables not in E; then, using Equation (1),

Pe) =Y ...% P(xi.....x.€)
X1 Xk
=Y .Y [Pl pan.
X1 Xk i

The problem at hand is to perform the summation and multiplication in an efficient order.
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This computation can be abstracted into the problem of evaluating expressions of the form
E=Y"_ > T[rww )
X1 Xl

which consist of sums and products of high-dimensional matrices (called factors). More specifically, each
f1 is a factor (or a table) that contains an entry for each value assignment y; of Y] C {Xy, ..., Xi}.

The product of two factors fi,(Ym) fn(Yn) is defined as the factor f;(Y)), where Y] = Y U Y. An
entry of f;(Y]) which corresponds to the value assignment yj is obtained through the product of the entries
of the factors f,,(Ym) and f;,(Yn) which correspond to the value assignments yy, and y, consistent with yj.

The process of summing a variable X; € Y) from a factor f;(Y1) produces a new factor f;*(Y)), where
Y; = Y1\{X;}. An entry of f;*(Y[) which corresponds to the value assignment y;' is obtained through the
sum of the entries in the factor f;(Y]) corresponding to the value assignment y; for every possible value
Xi of X i

Two extreme ways to compute expression (2) are variable elimination and conditioning (e.g., Shachter
et al., 1994; Dechter, 1998). In variable elimination, we eliminate one variable at a time, by multiplying
all the factors that include the variable and then summing over all possible values for the variable. In
conditioning, we instantiate some of the variables, perform the computation for each possible instantiation
of the variables, and then sum the results. Factors including instantiated variables are reduced to include
only those entries corresponding to assignments consistent with the instantiation.

Variable elimination is best explained via an example. Assume that we want to eliminate Xj; from
Equation (2). This is done in several steps. First, we rearrange the order of summation so that the sum
over Xy is the innermost. Then, we move all the terms f;(Y]) where X; ¢ Y] outside the summation over
Xi. Suppose that the factors fi, ... f;; remain in the scope of the summation over Xj. A new factor f(Y)
which is a product of these m factors, defined over Y = UT: 1Y, is constructed:

fo0=T]H). 3)

j=1

In the last step, we marginalize Xy out of f(Y) by summing over all possible values of X;. We obtain a
new factor f'(Y’), where Y =Y — {X;}:

FY) =) fY). “
Xk

Note that with these steps we have rewritten E of Equation (2) as

E=Y .Y o] nx.

Xk—1 I>m

The resulting expression has the same general form of Equation (2). Therefore, other variables can now
be eliminated by repeating the same sequence of steps.

The time complexity of variable elimination is proportional to the total size of the factors created during
the computation, and it depends on the order of elimination.

The second approach to compute E in Equation (2) is to perform the calculation using conditioning.
We compute E by considering expressions of the form

Eq=Y .. > T[#®H
X2 Xp o1
where fz* is fj restricted to the case where X| = x1 and Yi" =Y — {X}. Note that

E:ZEXI.
X1
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The motivation for this approach is that computing Ey, is easier than computing E, since it involves one
less summation and some of the factors are smaller. The complexity of this procedure depends on the
number of possible joint assignments to the variables that we condition on, since the same computation is
repeated for each joint assignment. This approach is called global conditioning in Shachter et al. (1994).

The advantage of conditioning over variable elimination is the lower memory overhead. The main
disadvantage of this approach is that in different evaluations of E,, identical subexpressions are often
recomputed several times. This results in higher time requirements. Therefore, hybrid algorithms, such
as the one suggested by Dechter (1996), combining variable elimination with conditioning to achieve a
space—time tradeoff have been proposed. These algorithms first choose a set of variables to condition on;
then the probability of the data is computed for each joint assignment of values to these variables, using
variable elimination. Finally, the results are summed to obtain the desired likelihood.

3. CONSTRAINED ELIMINATION

In this section, we define the constrained elimination problem, the solution of which optimizes variable
elimination procedures with or without memory constraints. Section 3.1 provides a formal definition of the
problem. Sections 3.2 and 3.3 describe two greedy algorithms for approximately solving the constrained
elimination problem. Section 3.4 highlights some implementation choices we made.

3.1. Terminology

The following sequence of definitions is needed in order to formulate the constrained elimination problem.

Definition (graph concepts). A weighted undirected graph G(V, E, w), w : V — N, is an undirected
graph where each vertex v € V is assigned a weight w(v). Two vertices u, v € V are said to be adjacent
(or neighbors) if (u,v) € E. We denote by Ng(v) = {u € V|(u,v) € E} the set of vertices which are
adjacent to v in G. We denote by Ng(v) = Ng(v) U {v} the set of vertices which are neighbors of v,
including v itself. A complete subgraph (or clique) G[S] of G is a graph with vertices S such that all
vertices are neighbors. A maximal clique in a graph G is a clique G[S] such that there exists no vertex
set 8" O S for which G[S'] is a clique.

Definition (elimination sequence). The process of making Ng(v) a complete subgraph of G(V, E)
and removing v and its incident edges from G is called eliminating vertex v € V. Let o denote a
permutation on {1,...,n}. Let G; = (V;, E;),i = 2,...,n, denote the graphs obtained from G| = G
by eliminating in order the vertices Xq(1), ..., Xai—1) € V. Note that G,, = (Xq(n), ). The sequence
Xo = (Xa(1)s - --» Xa@m)) is called an elimination sequence of G. The cost of eliminating a vertex v € V;
from graph G; is Cg,(v) = ]_[u6 Ng, ) w(u). The elimination cost of an elimination sequence X, =

(XOl(l)a cees Xa(n)) is

C(Xa) =Y Ci,(Xuii))- )

i=1

Note that Cg, (X« (;)) depends on the permutation «, albeit this dependence is suppressed in our notation.
The cost function C (X ), which is often referred to as the total state space (e.g., Kjerulff, 1990), is a good
approximated measure of the time and space complexity of computations in Bayesian networks, provided
that the heaviest clique created, having the welght max;Cg,(Xa(i)), fits into the RAM size of the working
environment. An optimal elimination sequence Xa is a sequence which satisfies Xa = argmingy C(Xy).
When the heaviest clique does not fit into memory, as is often the case in practice, a more elaborated
definition is needed.

Definition (constrained elimination sequence). The process of removing vertex v € V and its incident
edges from G is called conditioning on v. Let 8 = (B1, ..., Bn) be a vector where B; € {0, 1}. A constrained
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elimination sequence Xy g = ((Xa(l), ooy Xam)s ﬂ) is a sequence of vertices along with a binary vector
B such that vertex Xy is eliminated if B; = 0 and conditioned on if B; = 1. Graph Gy is obtained
from graph G; by eliminating or conditioning on vertex X, depending on the value of B;.

The elimination cost C(Xg,g) of a constrained elimination sequence X, g is given by

n i—1
> []‘[ w(xmk))ﬁk} (1= B)C,; (Xa)- (6)

i=1 Lk=1

Note that when S; = 0 for each i, this cost function reduces to the cost function (5).

Definition. The constrained elimination problem is fo find a constrained elimination sequence )A(a, B
which satisfies )A(a,f; = argming g C(Xq,pg), such that max; Cg,(Xe@)) < T.

If for a weighted undirected graph G and a threshold 7, it is the case that T < minyey, Cg, (X) for
some i for each constrained elimination sequence X, g, then the constrained elimination problem cannot
be solved for this input. On the other hand, if 7 > ]_[7: | w(X;), then the constrained elimination problem
reduces to the (unconstrained) elimination problem, in which case all vertices are eliminated, namely,
Bi = 0 for all i. This claim holds because the elimination cost of a vertex is never larger than ]—[f’=1 w(X;).

The solution of the constrained elimination problem provides us with a solution to the problem presented
in Section 2 of combining variable elimination with conditioning to achieve a desired time-space tradeoff.
When we condition on a variable, we fix its value. If we set T to the memory limitations of the working
environment, then a solution to the constrained elimination problem will provide us with the best choice,
with regard to time complexity, that meets memory requirements.

We now present two algorithms that attempt to find close-to-optimal constrained elimination sequences.

3.2. A Greedy Algorithm

Our deterministic greedy algorithm receives as input a weighted undirected graph, G(V, E, w) and
a threshold 7', and outputs a constrained elimination sequence Xy g such that the elimination cost of
each vertex is at most 7'. In iteration i, the greedy algorithm chooses a vertex X; which satisfies X; =
argminycy, Cg,; (X). The algorithm terminates when every vertex has been removed from the graph. If in
iteration i the elimination cost Cg, (X) of every vertex is above the given threshold T, then a vertex X; is
chosen to be conditioned on (rather than eliminated). The vertex X; to be conditioned on can be chosen
in various ways, one of which is via

X; = arg max ING; (X)|Cg; (X),

where Ng, (X) is the set of vertices which are neighbors of X in G;. The algorithm is shown in Fig. 1.
See Section 3.4 for an alternative way of choosing the vertex to be conditioned on.

3.3. Stochastic-Greedy Algorithm

The deterministic greedy algorithm can be vastly improved on large problems by introducing randomized
selection of vertices to be eliminated and running the algorithm sufficiently many times.

Our stochastic greedy algorithm first applies the deterministic greedy algorithm to determine the com-
plexity of the problem at hand, which is estimated according to the cost of the elimination sequence found.
Only if this cost is above a predetermined cost C,,;, are stochastic greedy iterations applied. The time
spent trying to find a better elimination sequence is also determined according to this cost. The algorithm
is shown in Fig. 2.

The stochastic greedy algorithm uses a procedure sg(G, T) which is called in each iteration. This
procedure finds a constrained elimination sequence using randomized selection of vertices. If the cost
of the elimination sequence found is smaller than the cost of the best previously found sequence, the



268 FISHELSON AND GEIGER

Algorithm Deterministic-Greedy(G,T)

Input: A weighted undirected graph G(V, E, w), and a threshold T.

Output: A constrained elimination sequence X, s such that the elimination cost of each

verlex < T

1. Initialize vector 3 of size n with zeroes.
2.4 1
3.G — G
4. While G; is not the empty graph do
e forall X ¢ V, compute Cz,(X)
e Pick X, — argminyey, Cg,(X)
o It C,(Xy) > T then {conditioning on Xy}
forall X € V; compute /| N, (X)|Ce, (X)
Pick X = arg maxyxcy, \/mcc;i()()
Bi—1
Else {eliminating X}
E; — B U {(u,v)|u,v € Ng,(Xi)}
¢ Remove X}, and its incident edges from G;
e (i) — k
o — i+ 1

5. Return X, 5 = ((Xo1), -+ s Xam)), 8)

FIG. 1. Algorithm deterministic-greedy.

new sequence and cost are recorded. The only difference between procedure sg(G, T) and algorithm
Deterministic-Greedy(G,T), described in the previous section, is in the way the vertex to be eliminated is
chosen. Procedure sg(G, T') finds in each iteration m vertices with the smallest elimination cost and flips
a coin to choose between them. The coin is biased according to the elimination costs of the m vertices
considered for elimination. If we denote the m vertices chosen in iteration i by Xji, ..., Xj», then the
probability of vertex X;; to be chosen is

[Ce, (Xip]”
Y [Co(xin]”

Pr(Xl-j) =


http://www.liebertonline.com/action/showImage?doi=10.1089/1066527041410409&iName=master.img-000.png&w=423&h=502
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Algorithm Stochastic-Greedy(G,T,Crnin)

Input: A weighted undirected graph G(V, E/, w), a threshold T, and a minimum

cost Crin.

Output: A constrained elimination sequence X, g such that the elimination

cost of each vertex < T.

1. X, 3 « deterministic-greedy(G,T)
2.1f C(X4,8) < Crin then return X, 3
3. Set T according to C( X, 3)
Fori— 1lwIdo
o X757 — sg(G,T)
o« It C(XTEP) < O(Xg ) then
Xap — X20°

a,ﬁ
4. Return Xa,'g

FIG. 2. Algorithm stochastic-greedy.

where y = % Note that y — 0 implies a random choice among m candidates and y — oo implies that
with probability 1 the stochastic run chooses a vertex of lowest cost like the deterministic run, regardless
of m. The choice of the parameters y = % and m = 3 has been tested experimentally.

Setting I, the limit on the number of iterations, in line 3 of Algorithm Stochastic-Greedy is determined
so that the optimization time would not be larger than a fraction of the total running time of the subsequent
likelihood computation which can be approximated roughly from C(Xg, g). Details are given in the next
section.

3.4. Implementation

We now present several implementation choices we made in order to speed up the computations and
improve memory utilization.

The first choice concerns the elimination cost of a vertex. If the set of neighbors of some vertex v
already form a clique (such a vertex is often referred to as simplicial, e.g., Kjerulff [1990]), then we set
the cost of the vertex to 0 and hence make it a preferred vertex to be eliminated.

The second choice affects the process of searching for a vertex (or three vertices) with the minimum
elimination cost. Since this search can be time consuming, if the algorithm encounters a vertex having a
cost below a threshold T;,,;,,, then the search for the minimum is discontinued and this vertex is chosen.
In the current implementation, we use Tj,;, = 15, which is a very small cost.

The third choice determines the amount of time spent on trying to improve the elimination sequence.
Based on extensive experiments, we constructed a table with 10 complexity classes determined by the
cost of the elimination sequence found. The first class is for problems with cost < 107, and the last class
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is for problems with cost > 10", The intervals 10’ < cost < 10°t! i = 7,..., 14 determine the eight
intermediate complexity classes. This cost function serves as a rough estimate of the run time needed for
the subsequent likelihood computation, and according to it the maximum amount of optimization time
that is allocated for each class is set to a fraction of the overall run time of the likelihood computation.
Problems in the first complexity class, namely with a cost lower than 107, are not allocated any time for
optimization.

The complexity class and the maximum number of iterations are set initially according to the cost of
the elimination sequence found by the deterministic greedy algorithm. These numbers are then updated
whenever an elimination sequence with lower cost is found. If an elimination sequence with a cost below 107
is found, then the optimization is stopped and this sequence is used. Every 200 iterations, the improvement
rate, per iteration, in the elimination cost of sequences is checked, and if it is below a prescribed threshold
of 0.0001, then optimization is terminated. As mentioned above, the cost of the elimination sequence is a
rough estimate of the run time needed for the likelihood computation, with some variance. Improving this
time estimate and adapting it to a specific computer at hand could lead to further improvement in total run
time.

The fourth choice relates to the way we choose a vertex to condition on. The input to the problem
presented in Section 2 is in fact a Bayesian network. Each variable of the Bayesian network corresponds
to a vertex in the graph and appears in several factors, each of which is a probability function. During
the computation, some of the original factors are deleted and new factors are created. The vertex X; that
SUPERLINK chooses to condition on satisfies

X; = arg max | f6; (X)|Cg; (X), 7

where fg,(X) are the factors in G; that include X. The objective is to condition on a vertex whose
elimination reduces memory requirements as much as possible in as many factors as possible. The idea
behind the condition that appears in Section 3.2 is that if we condition on a vertex with many neighbors, we
reduce the number of neighbors for many vertices. Experimentally, the condition expressed by Equation (7)
has been found to be slightly better.

4. APPLICATION IN GENETICS

Genetic linkage analysis is a challenging application of Bayesian networks since it requires the use of
networks consisting of thousands of vertices. Consequently, likelihood computations in such networks call
for extremely efficient order of summation and conditioning operations. To validate our algorithms with
realistic data, we incorporated them in the newest version of the genetic linkage program SUPERLINK.

In SUPERLINK, pedigrees are represented in a detailed manner using Bayesian networks. A pedigree,
which is the input to a genetic linkage problem, defines a joint distribution, parameterized by the recombi-
nation fraction 6, of the genotypes and phenotypes of the individuals in the pedigree. The goal of genetic
linkage analysis is to estimate the recombination fraction 6 between a disease gene and known loci on the
chromosome. The approximate physical location of the disease gene on the chromosome can be inferred
from the estimated recombination fraction. For more details on the exact structure of the Bayesian net-
works constructed by SUPERLINK, we refer the reader to Friedman et al. (2000) and Fishelson and Geiger
(2002).

Using Bayesian networks as the representation of linkage analysis problems allows us to give a unified
treatment to the entire spectrum of linkage problems and combine the two extreme approaches for com-
puting pedigree likelihood exactly, the Elston—Stewart approach and the Lander—Green approach. These
two approaches are both variants of variable-elimination methods that use different elimination orders.

Whenever feasible, SUPERLINK uses variable elimination alone to compute the likelihood of pedigree
data. Otherwise, variable elimination is combined with conditioning to achieve the best time—space tradeoff
given the memory available for the linkage analysis problem. The choice of variable-elimination order,
including the choice of variables for conditioning, is determined by the greedy algorithms presented in
Section 3.
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5. EXPERIMENTAL RESULTS

We performed four experiments. The first experiment compared the performance of the stochastic greedy
algorithm versus the deterministic greedy algorithm on a variety of large realistic simulated pedigree
datasets. We compared both run times and costs of the elimination sequences found by each algorithm.
The experiment shows the superiority of the stochastic greedy algorithm over the deterministic greedy
algorithm in almost all cases. We can see an order of magnitude improvement in run times of likelihood
computations.

The second experiment evaluated the performance of the stochastic greedy algorithm for finding an
(unconstrained) elimination sequence such that the size of the largest clique created during the elimination
process is as small as possible and assuming an unweighted graph as input, namely, the weights of all
vertices are fixed to the same value, say ¢ > 2. This quantity (minus one) is called the treewidth of the
graph. It is an important quantity for many applications, such as constraint satisfaction, independent set,
dominating set, graph K-colorability and Hamiltonian circuit (Arnborg, 1985).

The third and fourth experiments were performed in order to determine the optimal values for the
parameters ¥ and m used in the stochastic greedy algorithm. The running environment for experiments
A,C and D was a Sun OS version 5.8 (sun4u) with 2,624 MB RAM. Experiment B was performed by
Arie Koster on a four-processor Pentium, 1,700 MHz, with 1 GB RAM.

Experiment A. The first experiment compared the performance of the deterministic greedy algorithm
and the stochastic greedy algorithm (Table 1). We can see that using the stochastic greedy algorithm
of SUPERLINK V1.1 enables us to process datasets which could not be processed using the deterministic
greedy algorithm of SUPERLINK V1, and that the run time improvement is often over an order of magni-
tude. Note that other leading linkage programs, such as FASTLINK v4.1 (Cottingham et al., 1993; Schiffer
et al., 1994; Becker et al., 1998) and GENEHUNTER V2.1 (Kruglyak et al., 1996) cannot run any of
these datasets. VITESSE v2.0 (O’Connell and Weeks, 1995; O’Connell, 2001) can run only the first
dataset.

All the datasets used in this experiment are based on a single growing pedigree, in terms of the number
of loci and the number of people. For each dataset, we show its parameters in terms of the number of people
in the pedigree and the number of loci. The number of variables in the Bayesian network constructed for
the specific problem is also shown; this number does not include variables that have been determined to
be constant due to phenotypic data.

TABLE 1. STOCHASTIC GREEDY VERSUS DETERMINISTIC GREEDY?

Run time (sec)

fiPeople/ Deterministic Stochastic greedy (SG) Improvement Improvement
fLoci/ greedy ratio Cost ratio

fiNodes (DG) min avg max (run time) (DG) (cost)
100/10/1676 5.8 5.8 5.8 5.8 1 2.0E6 1
100/15/2449 17 12.3 16 17.9 0.95-1.4 1.3E7 1-1.9
100/20/3224 84 29.1 52 84.9 0.99-2.89 6.1E7 1-4.7
200/10/3254 38.8 8.2 16.2 23.8 1.63-4.73 1.7E8 12.1-34
200/15/4720 2194 89.2 140.4 182.7 1.2-2.5 3.8E9 17.3-38.4
200/20/6242 * 358.8 1703 4446.3 00 1.3E14 7411.8-114545.5
300/10/4859 554.7 12.1 272 46.8 11.9-45.9 4.6E10 478.9-9100
300/15/7040 2273.8 139.5 367.2 966.5 2.4-16.3 2.6E11 71.4-419
300/20/9276 * 6352.7 19940 36932.3 00 4.4E15 6753.8-51647.1
400/10/6372 283.6 20.6 50.7 94 3-13.8 3.7E10 442.2-3336.4
400/15/9292 9701.8 385.5 1163.9 3517 2.8-25.2 1.1E12 144.3-475
400/20/12278 * 323369 699145  164708.7 00 1.6E17  14909.1-298181.8

2The bold column shows the ratio of run time of SG, over 10 runs, versus DG. The last two columns show the cost of the
elimination sequences found by DG and the ratio of cost found by SG versus DG. The symbol * means more than 100 hrs.
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Note that the times reported include the optimization time and the subsequent likelihood computation
time. For the deterministic algorithm, we report the cost of the elimination sequence found and the run time.
We also show the improvement ratios in cost and time of the stochastic algorithm versus the deterministic
algorithm. For the stochastic algorithm, the results are reported over ten runs. The differences between the
improvement ratio in run time and the improvement ratio in cost are due to the optimization time included
in the run time and the fact that the cost does not fully predict the run time. There is a significant variance
in the results.

Experiment B. The second experiment compared the performance of our algorithms with three known
heuristic algorithms for finding treewidth: MCS™, LEX_P*, and LEX_M" (Koster et al., 2001). Our
stochastic algorithm (SG) is found to be superior as can be seen from Table 2.

The three algorithms consist of two steps. First, a preprocessing step in which the graph is contracted
by a series of graph reductions is applied (Bodlaender et al., 2001). In the MCS™ algorithm, a maximum
cardinality search (Tarjan and Yannakakis, 1984) is executed at the second step. The other two algorithms
are variants of a lexicographic breadth-first search algorithm (Rose et al., 1976) with graph reductions as
a preprocessing step.

Note that the run time of MCS™ is about tenfold the run time of SG with 100 iterations, as can be
seen from Table 2. This is because MCS™ is run |V| iterations; in each iteration a different vertex serves
as a starting point. Also note that occasionally there is a vast reduction in the size of the largest clique
produced by MCS™, but usually SG gives a smaller largest clique. The other two algorithms (LEX_P™,
LEX_MT) are inferior to MCS™ on these datasets, as can be seen from Table 2.

In all graphs, the stochastic greedy algorithm (using 100 iterations) reduced the size of the largest clique
created compared to the deterministic greedy algorithm; on the average, the size of the largest clique
created in these examples was reduced by 29%. Recall that an improvement of A in the largest clique size
suggests an improvement of ¢® in run time. Further note that although the larger graphs have clique sizes
up to 40 vertices, they can still be used as inputs to SUPERLINK due to the conditioning operation which
sufficiently reduces the larger cliques.

TABLE 2. TREEWIDTH EXPERIMENTS?

Tree width Time (sec)
tNodes  #Edges = SG ~ MCST  LEX_Pt  LEX Mt SG Mcst LEX_P* LEX Mt
3915 6813 40 26 33 33 15.03 210.63 342.09 467.05
3979 6941 21 24 32 31 14.15 22443 246.51 355.89
4637 8184 18 15 15 16 21.78 173.89 195.5 353.58
4720 8211 22 26 31 31 2271 233.73 299.42 476.3
4733 8246 23 32 32 31 23.34 254.89 366.57 554.46
6158 10822 17 19 18 18 41 375.43 377.41 669.73
6166 10695 37 22 33 33 474 359.98 537.6 886.51
6242 10814 27 30 42 42 45.61 495.24 607.17 928.6
6253 10755 19 19 26 27 47.04 416.32 457.38 813.79
6309 10829 19 22 29 27 38.63 323.52 438.42 712.15
6372 11198 21 24 31 31 45.06 426.14 500.13 834.41
6393 10891 22 23 26 26 43.27 403.67 402.29 724.6
9135 15550 23 23 32 32 99.52 802 1098.87 1755.69
9223 15579 22 26 33 33 92.56 781.33 1056.06 1799.59
9276 15926 30 34 45 46 104.74 949.2 1642.84 2464.48
9292 16096 24 33 43 42 100.07 113135 1330.88 2191.66
11800 20073 26 25 33 33 162.41 1450.43 2022.12 3606.19
12058 20270 23 26 34 36 166.4 1382.61 2055.31 3630.71
12278 21215 32 40 51 62 183.93  2211.95 3249.85 5325.91
12606 21440 24 32 39 39 171.55 1764.04 2038.08 3697.2

4The bold letters show which algorithm(s) achieved the best result for a given instance. Note that SG achieves the best result on
16/20 instances.
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Experiment C. The third experiment compared the class of functions [Cci (X )]V for the biased coin
for the optimal value of y. We found that on the average, if we set y to a fixed value shared by the
entire run of our algorithm, then the best results are achieved by setting y = % Coincidentally, this
value was the natural choice made before any experimentation took place. We ran 127 random graphs of
sizes ranging from 4,000 vertices up to 20,000 with various treewidths. The graphs were obtained from
simulated pedigree data. Each graph was run on the following values of y: 0.25,0.33,0.5,0.75, and 1,
and the results were compared with regard to the cost of the elimination sequence found. The variance
of performance was very high. The distribution of the most successful runs with regard to the cost of the
elimination sequence found, as a function of y, is given below showing the superiority of y = %:

4 0.25 0.33 0.5 0.75 1

#runs 18 21 51 21 16

Experiment D. The fourth experiment tested the optimal value for m ranging from 3 to 15 using similar
graphs to those used in Experiment 3. There is no clear indication that a specific fixed choice of m is
significantly better than others. The value m = 3 for SUPERLINK has been chosen quite arbitrarily.

6. RELATED WORK

In Kjerulff (1990), a survey and evaluation of several triangulation algorithms, which are analogous
to algorithms for finding unconstrained elimination sequences, is reported. Also presented are several
simple heuristic methods. The experimental results of Kjerulff (1990) show that the minimum weight
heuristic, which corresponds to the deterministic-greedy algorithm described herein, gives overall the best
results in most cases—results which we improve with our stochastic algorithm. In some cases, simulated
annealing produces considerably better results than this heuristic, and in other cases, there is only a slight
improvement. Kjarulff concludes with the following:

The lesson to be learnt from this comparison is: If time is not a crucial parameter it might be recommendable
to use annealing. ... On the other hand, if triangulation has to be fast we can by no means recommend the
annealing algorithm which is orders of magnitude slower than the heuristic algorithms.

Our stochastic greedy algorithm minimizes the total run time of likelihood computations which includes
the time for finding a good elimination order and the time for performing the elimination. Simulated
annealing may occasionally produce better elimination orders, but we expect that the time for finding an
improvement would usually be larger than the time gained due to the improved elimination order.

Several hybrid algorithms combining variable elimination with conditioning to achieve a space-time
tradeoff have been proposed in the context of constraint satisfaction. The algorithms proposed by Larrosa
(2000) and Rish and Dechter (2000) interleave variable elimination with conditioning. Both algorithms are
controlled by a parameter which determines in each step whether variable elimination will be performed or
a variable to condition on will be chosen. Consequently, our stochastic greedy algorithm can also optimize
these algorithms for constraint satisfaction.

7. DISCUSSION

In this paper, we defined the constrained elimination problem, which is to find an optimal elimination
sequence of a graph under the constraint that the weight of the heaviest clique created is below a cer-
tain threshold. We presented a stochastic greedy algorithm for approximately solving this problem and
implemented it in the genetic linkage program SUPERLINK.

We have demonstrated the significance of using the stochastic greedy algorithm in genetic linkage
analysis. Our optimization algorithm can also be utilized in a variety of different applications, such as con-
straint satisfaction, independent set, dominating set, graph K-colorability, and Hamiltonian circuit (Arnborg,
1985; Dechter, 1998) as well as in other applications of Bayesian networks.



274 FISHELSON AND GEIGER

The heuristic algorithm we presented is indeed simple and yet is new and the most effective algorithm
to date for minimizing the total run time of optimization and likelihood computation. The success of this
algorithm stems from the fact that it is an any time algorithm; after each iteration, which is very fast, there
is a valid elimination order and a good estimate of the total run time. The history of improvements and
the estimated total run time provide a mechanism to determine when to stop the optimization phase and
move on to computing the likelihood. Currently, we use the cost of the elimination sequence as a rough
estimate of the total run time. We plan to develop a cost function which would serve as a more accurate
estimate of the total run time.

Recall that if summation in the cost function (5) is replaced with maximization and the weight of every
vertex in the graph is constant and 7 = oo, then the problem is reduced to finding the treewidth of a
graph, which is known to be NP-complete (Arnborg et al., 1987). Table 2 shows that our stochastic greedy
algorithm is closer to finding treewidth than are several known algorithms.

Due to the small amount of time it took for the reduction rules due to run (times not shown), we conclude
that reduction rules have a potential for further optimization as a preprocessing step before SG is applied.
We plan to adapt a weighted version of these reduction rules and test it thoroughly within SUPERLINK to
determine whether the additional running time needed for optimization still yields a gain on the total run
time. We also plan to compare our algorithm to other alternatives for computing treewidth, such as those
of Shoikhet and Geiger (1997), Becker and Geiger (2001), and the algorithm implemented in the HUGIN
6.1 system (Andersen et al., 1989; Hugin, 2002).
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