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Abstract

We discuss Bayesian approaches for learn-
ing Bayesian networks from data. First, we
review a metric for computing the relative
posterior probability of a network structure
given data developed by Heckerman et al.
(1994a,b,c). We see that the metric has a
property useful for inferring causation from
data. Next, we describe search methods
for identifying network structures with high
posterior probabilities. We describe poly-
nomial algorithms for �nding the highest-
scoring network structures in the special case
where every node has at most k = 1 par-
ent. We show that the general case (k > 1)
is NP-hard, and review heuristic search al-
gorithms for this general case. Finally, we
describe a methodology for evaluating learn-
ing algorithms, and use this methodology to
evaluate various scoring metrics and search
procedures.

1 Introduction

Recently, many researchers have begun to investigate
methods for learning Bayesian networks, including
Bayesian methods [Cooper and Herskovits, 1991, Bun-
tine, 1991, York 1992, Spiegelhalter et al., 1993, Madi-
gan and Raferty, 1994, Heckerman et al., 1994], quasi-
Bayesian methods [Lam and Bacchus, 1993, Suzuki,
1993], and nonBayesian methods [Pearl and Verma,
1991, Spirtes et al., 1993]. Many of these approaches
have the same basic components: a scoring metric and
a search procedure. The scoring metric takes data
and a network structure and returns a score reect-
ing the goodness-of-�t of the data to the structure.
A search procedure generates networks for evaluation
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by the scoring metric. These approaches use the two
components to identify a network structure or set of
structures that can be used to predict future events or
infer causal relationships.

The Bayesian approach can be understood as follows.
Suppose we have a domain of variables fx1; : : : ; xng =
U , and a set of cases fC1; : : : ; Cmg where each case is
an instance of some or of all the variables in U . We
sometimes refer to D as a database. Further, sup-
pose that we wish to determine the joint distribution
p(CjD; �)|the probability distribution of a new case
C, given the database and our current state of infor-
mation �. Rather than reason about this distribution
directly, we imagine that the data is a random sample
from some Bayesian network structure BS with un-
known parameters. Using Bh

S to denote the hypoth-
esis that the data is generated by network structure
BS , and assuming the hypotheses corresponding to all
possible network structures form a mutually exclusive
and collectively exhaustive set, we have

p(CjD; �) =
X
all Bh

S

p(CjBh
S ; D; �) � p(B

h
S jD; �) (1)

In practice, it is impossible to sum over all possible net-
work structures. Consequently, we attempt to identify
a small subset H of network-structure hypotheses that
account for a large fraction of the posterior probability
of the hypotheses. Rewriting Equation 1, we obtain

p(CjD; �) � c
X

Bh
S
2H

p(CjBh
S ; D; �) � p(B

h
S jD; �) (2)

where c is the normalization constant given by
1=[
P

Bh
S
2H p(Bh

S jD; �)]. From Equation 2, we

see that only the relative posterior probability
of hypotheses matter. Thus, rather than com-
pute posterior probability, one typically computes
p(Bh

S ; Dj�) = p(Bh
S j�) p(DjB

h
S ; �), or a Bayes' factor|

p(Bh
S jD; �)=p(B

h
S0jD; �)|where BS0 is some reference

structure such as the empty graph.



The approach is not only an approximation for
p(CjD; �) but a method for learning network structure,
where relative posterior probability plays the role of
scoring metric. For example, when jH j = 1, we learn
a single network structure: the MAP (maximum a pos-

teriori) structure of U . When jH j > 1, we learn a col-
lection of network structures weighted by the relative
posterior probability of their corresponding hypothe-
ses. As we discuss in Section 3, learning about struc-
ture is useful, because we can sometimes infer causal
relationships in a domain and consequently predict the
e�ects of interventions.

In this paper, we review a scoring metric described
by Heckerman et al. (1994a,b,c). The metric has
the property of likelihood equivalence, which says that
any two isomorphic network structures must have the
same likelihood p(DjBh

S ; �). In Section 3, we argue
that this property is desirable for inferring causation
from data. In addition, we examine search methods in
detail. We describe polynomial algorithms for �nding
the highest-scoring networks in the special case where
every node has at most k = 1 parent. Also, we show
that the general case (k > 1) is NP-hard, even for a
score-equivalent metric, and review heuristic search al-
gorithms for this general case. Finally, we describe a
methodology for evaluating learning algorithms, and
use this methodology to evaluate various scoring met-
rics and search procedures.

2 Review of Bayesian Scoring Metrics

In this section, we review a Bayesian scoring metric
for learning Bayesian networks containing only discrete
variables described by Heckerman et al. (1994a,b,c)|
herein referred to as HGC. The metric is closely re-
lated to the metrics described by Cooper and Her-
skovits (1991, 1992)|herein referred to as CH|and
Buntine (1991). Although we limit our discussion to
domains containing only discrete variables, many of
the basic points translate to the more general case
[Geiger and Heckerman, 1994].

CH derive a Bayesian scoring metric under the follow-
ing assumptions:

1. The database D is a multinomial sample from some
(possibly uncertain) structure BS with (possibly un-
certain) parameters �BS

. We use Bh
S to denote the

hypothesis that the database is a multinomial sample
from structure BS .

1 Given a belief-network structure
BS , we use �i to denote the parents of xi. We use
ri to denote the number of states of variable xi, and
qi =

Q
xl2�i

rl to denote the number of instances of

1There are some subtleties about the de�nition of Bh
S

which are explored in HGC.

�i. We use the integer j to index these instances.
That is, we write �i = j to denote the observation of
the jth instance of the parents of xi. We use �ijk to
denote the parameter associated with the kth state of
variable xi, given the jth state of �i. (We can think
of �ijk as the long-run fraction of cases where xi = k,
in those cases where �i = j.) We use �ij to denote
the union of �ijk over k. The parameters of BS (�BS

)
are the union of �ij for all instances j of all variables
xi.

2. For all belief-network structures BS , �(�BS
jBh

S) =Q
i

Q
j �(�ij jBh

S). (Throughout the paper, we use
�(�j�) to denote a conditional probability density.) The
assumption corresponds to the local and global inde-

pendence assumptions made by Spiegelhalter and Lau-
ritzen (1990). We refer to this assumption simply as
parameter independence.

3. If xi has the same parents in any two belief-network
structures BS1 and BS2, then for j = 1; : : : ; qi,
�(�ij jB

h
S1) = �(�ij jB

h
S2). We call this assumption

parameter modularity. This assumption was made im-
plicitly by CH and was made explicit by HGC.

4. For every belief-network structure BS , and for all
�ij � �BS

, �(�ij jBh
S) has the Dirichlet distribution

�(�ij jBh
S) /

Q
k �

N 0

ijk�1

ijk .

Given these four assumptions, the prior densities of
�BS

for all structure BS are determined by the Dirich-
let exponents N 0

ijk . To derive their metric, CH also
make the following assumption:

5. All databases are complete. That is, every variable
in every case in the database is observed.

Given this assumption, the parameters �BS
for any

network structure BS remain independent and mod-
ular (in the sense of Assumptions 2 and 3) after the
database has been observed. Consequently, CH obtain
the following result:

p(D;Bh
S j�) = (3)

p(Bh
S j�) �

nY
i=1

qiY
j=1

�(N 0
ij)

�(N 0
ij +Nij)

�
riY
k=1

�(N 0
ijk +Nijk)

�(N 0
ijk)

where Nijk is the number of cases in D where xi = k
and �i = j, Nij =

Pri
k=1Nijk , and N 0

ij =
Pri

k=1N
0
ijk ,

and �(�) is the Gamma function. We call this ex-
pression or any expression proportional to it the BD
(Bayesian Dirichlet) metric. We discuss the speci�ca-
tion of p(Bh

S j�) later in this section.

HGC derive a special case of the BD metric. First,
they argue for the property of hypothesis equivalence:

6. Hypotheses Bh
S1 and Bh

S2 are equivalent whenever
BS1 and BS2 are isomorphic.



Two network structures are said to be isomorphic if
they represent the same assertions of conditional inde-
pendence. For example, in the three variable domain
fx1; x2; x3g, the network structures x1 ! x2 ! x3
and x1  x2 ! x3 represent the same independence
assertion|x1 and x3 are independent given x2|and
are therefore isomorphic. We discuss the assumption
of hypothesis equivalence further in the following sec-
tion.

Next, HGC examine complete belief-

network structures|those containing no missing arcs.
Under the assumption of hypothesis equivalence, the
hypotheses corresponding to any two such structures
are the same, and are denoted Bh

SC
. They introduce

the following assumptions:

7. p(Bh
SC
j�) > 0

8. �(�x1;:::;xn jB
h
SC
; �) =

Q
x1;:::;xn

�
N 0

x1;:::;xn
�1

x1;:::;xn

In words, Assumption 7 says that the data may be
a random sample from a complete network structure.
Assumption 8 says that the probability density of the
parameters of the joint space of U conditioned on Bh

SC

is Dirichlet. HGC (1994a,b) show that Assumptions
6 through 8 are consistent with CH's Assumptions
1 through 4. Namely, they show that the random-
sample assumption (Assumption 1) and Assumptions
6 through 8 imply the assumption of parameter inde-
pendence (Assumption 2) and the Dirichlet assump-
tion (Assumption 4) for all complete network struc-
tures. As a consequence, they show that the Dirichlet
exponents N 0

ijk in the BD metric are constrained by
the relation

N 0
ijk = N 0 � p(xi = k;�i = jjBh

SC
) (4)

where N 0 is the user's equivalent sample size for the
domain.

HGC show that the BD metric so constrained has
the property of likelihood equivalence, which says that
the likelihoods p(DjBh

S1; �) and p(DjBh
S2; �) are equal

whenever BS1 and BS2 are isomorphic. They call this
special case the BDe metric (\e" for equivalence). In
the next section, we argue that the property of hy-
pothesis equivalence is useful for inferring causation
from data. We note that Buntine (1991) proposed a
special case of the BDe metric, which can be obtained
by computing p(xi = k;�i = jjBh

SC
) in Equation 4

from a uniform joint distribution. In addition, Bun-
tine stated that this metric satis�es the property which
we call likelihood equivalence.

HGC show that the probabilities in Equation 4 may
be computed from a prior Bayesian network provided
by the expert: a Bayesian network for p(U jBh

SC
; �).

This prior network encodes the user's beliefs about

what will happen in the next case, given Bh
SC
. As we

shall see, a prior network also can be used to facilitate
the assessment of the prior probabilities of network
structure as well as initialize search.

HGC (1994c) demonstrate a much stronger result than
that of HGC (1994a,b). Namely, under weak regu-
larity conditions, they show that the random-sample
assumption and the assumption of parameter indepen-
dence, when combined with the assumption of hypoth-
esis equivalence and the assumption that p(Bh

SC
j�) > 0

imply that the probability density of the joint-space
parameters of U conditioned on Bh

SC
must be Dirichlet

(Assumption 8). In essence, they show that parameter
independence in the context of learning Bayesian net-
works provides a new characterization of the Dirichlet
distribution. As a result, they show that CH's basic
assumptions for learning (Assumptions 1, 2, 3, and 5)
when combined with hypothesis equivalence and the
assumption p(Bh

SC
j�) > 0 imply the BDe metric.

To complete the speci�cation of a Bayesian scoring
metric, we need the prior probabilities of network
structures p(Bh

S j�).
2 HGC suggest a simple paramet-

ric formula for these probabilities. This formula pun-
ishes Bh

S for every arc that di�ers from those in the
prior network used in the computations of Equation 4.
Namely, let �i(B

h
S) and �i(P ) denote the parents of

xi in BS and the prior network, respectively. Let Æi de-
note the number of nodes in the symmetric di�erence
of �i(BS) and �i(P ). They set

p(Bh
S j�) = c

nY
i=1

�Æi (5)

where 0 < � � 1 is the penalty factor, and c is a nor-
malization constant. Buntine (1991) suggests a similar
approach where penalty factors are di�erent for di�er-
ent arcs.

We say that a metric is prior equivalent when the prior
probabilities of any two isomorphic network structures
are equal. We say a metric is score equivalent if it is
both prior equivalent and likelihood equivalent. The
parametric formula given in the previous paragraph
is not prior equivalent. HGC (1994c) describe other
parameterizations that are prior equivalent.

3 Inferring Causation

Bayesian networks were �rst described as a representa-
tion of conditional independence [Howard and Math-
eson, 1981, Pearl, 1988]. Recently, however, several
researchers have begun to explore an additional causal

2For the sake of brevity, we refer to the probability of a
network structure rather than the probability of a network-
structure hypothesis.



semantics for these networks. They argue that the rep-
resentation of causal knowledge is important, because
such knowledge|unlike statistical knowledge|allows
one to derive beliefs about a domain after intervention.
For example, most of us believe that smoking causes
lung cancer. From this knowledge, we infer that if we
stop smoking, then we decrease our chances of getting
lung cancer. In contrast, if we knew only that there
was a statistical correlation between smoking and lung
cancer, then we could not make this inference.

Causal networks, described by|for example|Pearl
and Verma (1991), Spirtes et al. (1993), Druzdzel and
Simon (1993), and Heckerman and Shachter (1994),
represent such causal relationships among variables.
In particular, a causal network for U is a Bayesian net-
work for U , wherein it is asserted that each nonroot
node x is caused by its parents. The precise meaning
of cause and e�ect is not important for this discussion.
The interested reader should consult the previous ref-
erences.

Given the distinction between statistical and causal
dependence, it would seem impossible to learn causal
networks from data produced by observation alone and
without intervention. For example, consider the sim-
ple three-variable domain U = fx1; x2; x3g. If we
�nd through the observation of data that the network
structure x1 ! x3  x2 is very likely, then we cannot
conclude that x1 and x2 are causes for x3. Rather, it
may be the case that there is a hidden common cause
of x1 and x3 as well as a hidden common cause of x2
and x3. If, however, we assume that every statistical
association derives from causal interaction, and that
there are no hidden common causes, then we can in-
terpret learned networks as causal networks. In our
example, under these assumptions, we can infer that
x1 and x2 are causes for x3. In our remaining discus-
sion, we take these assumptions as given.

When learning Bayesian networks having only the tra-
ditional conditional-independence semantics, the as-
sumption of hypothesis equivalence is reasonable, be-
cause two isomorphic network structures are identical
by de�nition of isomorphism. If we want to interpret
learned networks as being causal, however, the situ-
ation is not so straightforward. For purposes of this
discussion, it is useful to decompose a scoring metric
into two components: (1) determination of the prior
probability of network structure p(Bh

S j�) and (2) de-
termination of the likelihood p(DjBh

S ; �).

For most real-world problems that we have encoun-
tered, we have found that it is unreasonable to apply
the assumption of hypothesis equivalence to the deter-
mination of the prior probabilities of causal-network
structures. That is, we have found the assumption of

prior equivalence to be unreasonable. For example, it
is not unusual for one to believe that the proposition
x1 causes x2 is more likely than the proposition x2
causes x1. Such a belief would be excluded by prior
equivalence applied to the network structures x1  x2
and x1 ! x2.

In contrast, for most problems we have considered, we
have found it reasonable to apply hypothesis equiv-
alence to the determination of likelihood. That is,
we have expected likelihood equivalence to hold. Of
course, for any given problem, it is up to the deci-
sion maker to make this judgment. As a example of
where the use of likelihood equivalence is unreason-
able, imagine that a doctor may be uncertain as to
which of two possible causal mechanisms are responsi-
ble for an observed correlation between two diseases,
but certain that the existence of the �rst mechanism
implies the hypothesis disease d1 causes disease d2
(Bh

S1), and the existence of the second mechanism im-
plies the hypothesis disease d2 causes d1 (B

h
S1). In this

scenario, the probability densities �(�d1;d2 jB
h
S1; �) and

�(�d1;d2 jB
h
S2; �) may not be the same, in which case,

likelihood equivalence will not hold. Without speci�c
knowledge of competing causal mechanisms, however,
we typically have no reason to believe that data will
discriminate between two isomorphic network struc-
tures.

Under the assumption of likelihood equivalence, the
ratio of posterior probabilities of two isomorphic net-
work structures must be equal to the ratio of their
prior probabilities. Consequently, if the priors on
network structures are not too di�erent, then typi-
cally, learning will produce many isomorphic network
structures each having a large relative posterior prob-
ability. Furthermore, even for domains where the
assumption of likelihood equivalence does not hold,
there is a good chance that more than one hypoth-
esis will have a large relative posterior probability. In
such situations, we �nd it reasonable to average the
causal assertions contained in individual learned net-
works. For example, in our three-variable domain, let
us suppose that the data supports only the network
structure x1 ! x2 ! x3 and its isomorphic cousins
x1  x2  x3 and x1  x2 ! x3. If each of the
hypotheses corresponding to these structures have the
same prior probability, then the posterior probability
of each hypothesis will be 1=3, and we infer that the
proposition x2 cases x3 has probability 2=3. Under
these same conditions, the proposition that both x1
and x3 are causes of x2 has probability 0.



4 Search Methods

In this section, we examine methods for �nding net-
work structures with high scores. Although our meth-
ods are presented in the context of Bayesian scoring
metrics, they may be used in conjunction with other
nonBayesian metrics as well.

Many search methods for learning network structure|
including those that we describe|make use of a prop-
erty of scoring metrics that we call decomposability.
Given a network structure for domain U , we say that
a measure on that structure is decomposable if it can
be written as a product of measures, each of which
is a function only of one node and its parents. From
Equation 3, we see that the likelihood p(DjBh

S ; �) given
by the BD metric is decomposable. Consequently, if
the prior probabilities of network structures are de-
composable, then so is the BD metric. Thus, we can
write

p(D;Bh
S j�) =

nY
i=1

s(xij�i) (6)

where s(xij�i) is only a function of xi and its parents.
Most Bayesian and nonBayesian metrics to date are
decomposable. Given a decomposable metric, we can
compare the score for two network structures that dif-
fer by the addition or deletion of arcs pointing to xi, by
computing only the term s(xij�i) for both structures.

4.1 Special-Case Polynomial Algorithms

We �rst consider the special case of �nding the l net-
work structures with the highest score among all struc-
tures in which every node has at most one parent.

For each arc xj ! xi (including cases where xj is
null), we associate a weight w(xi; xj) � log s(xijxj)�
log s(xij;). From Equation 6, we have

log p(D;Bh
S) =

nX
i=1

log s(xij�i) (7)

=
nX
i=1

w(xi; �i) +
nX
i=1

log s(xij;)

where �i is the (possibly) null parent of xi. The last
term in Equation 7 is the same for all network struc-
tures. Thus, among the network structures in which
each node has at most one parent, ranking network
structures by sum of weights

Pn
i=1 w(xi; �i) or by score

has the same result.

Finding the network structure with the highest weight
(l = 1) is a special case of a well-known problem of
�nding maximum branchings, described as follows. A
tree-like network is a connected directed acyclic graph
in which no two edges are directed into the same node.

The root of a tree-like network is a unique node that
has no edges directed into it. A branching is a di-
rected forest that consists of disjoint tree-like net-
works. A spanning branching is any branching that
includes all nodes in the graph. A maximum branch-

ing is any spanning branching which maximizes the
sum of arc weights (in our case,

Pn
i=1 w(xi; �i)). An

eÆcient polynomial algorithm for �nding a maximum
branching was �rst described by Edmonds (1967). The
general case (l > 1) was treated by Camerini et al.
(1980).

These algorithms can be used to �nd the l branchings
with the highest weights regardless of the metric we
use, as long as one can associate a weight with every
edge. Therefore, this algorithm is appropriate for any
decomposable metric. When using metrics that are
score equivalent, however, we have

s(xijxj)s(xj j;) = s(xj jxi)s(xij;)

Thus, for any two edges xi ! xj and xi  xj ,
the weights w(xi; xj) and w(xj ; xi) are equal. Conse-
quently, the directionality of the arcs plays no role for
score-equivalent metrics, and the problem reduces to
�nding the l undirected forests for which

P
w(xi; xj)

is a maximum. For the case l = 1, we can apply a
maximum spanning tree algorithm (with arc weights
w(xi; xj)) to identify an undirected forest F having the
highest score. The set of network structures that are
formed from F by adding any directionality to the arcs
of F such that the resulting network is a branching,
yields a collection of isomorphic network structures
each having the same maximal score. This algorithm
is identical to the tree learning algorithm described
by Chow and Liu (1968), except that we use a score-
equivalent Bayesian metric rather than the mutual-
information metric. For the general case (l > 2), we
can use the algorithm of Gabow (1977) to identify the
l undirected forests having the highest score, and then
determine the l equivalence classes of network struc-
tures with the highest score.

4.2 Heuristic Search

A generalization of the problem described in the pre-
vious section is to �nd the l best networks from the set
of all networks in which each node has no more than k
parents. Unfortunately, even when l = 1, the problem
for k > 1 is NP-hard. Furthermore, let us consider the
following decision problem, which corresponds to our
optimization problem with l = 1.

k-LEARN

INSTANCE: Set of variables U , database D =
fC1; : : : ; Cmg, where each Ci is an instance of all vari-
ables in U , scoring metric M(D;BS) and real value
p,



QUESTION: Does there exist a network structure BS

de�ned over the variables in U , where each node in BS

has at most k parents, such that M(D;BS) � p?

H�o�gen (1993) shows that a similar problem for PAC
learning is NP-complete. His results can be translated
easily to show that k-LEARN is NP-complete for k > 1
when the BD metric is used. In the Appendix, we show
that k-LEARN is NP-complete, even when we use the
likelihood-equivalent BDe metric and the constraint of
prior equivalence.

Therefore, unless P = NP , it is appropriate to use
heuristic search algorithms for the general case k > 1.
In this section, we review several such algorithms.

As is the case with essentially all search methods, the
methods that we examine have two components: an
initialization phase and a search phase. For example,
let us consider the K2 search method described by CH.
The initialization phase consists of choosing an order-
ing over the variables in U . In the search phase, for
each node xi in the ordering provided, the node from
fxi; : : : ; xi�1g that most increases the network score is
added to the parent set of xi, until no node increases
the score or the size of �i exceeds a predetermined
constant.

The search algorithms we consider make successive arc
changes to the network, and employ the property of
decomposability to evaluate the merit of each change.
The possible changes that can be made are easy to
identify. For any pair of variables, if there is an arc
connecting them, then this arc can either be reversed
or removed. If there is no arc connecting them, then
an arc can be added in either direction. All changes
are subject to the constraint that the resulting network
contain no directed cycles. We use E to denote the set
of eligible changes to a graph, and �(e) to denote the
change in log score of the network resulting from the
modi�cation e 2 E. Given a decomposable metric, if
an arc to xi is added or deleted, only s(xij�i) need be
evaluated to determine �(e). If an arc between xi and
xj is reversed, then only s(xij�i) and s(xj j�j) need
be evaluated.

One simple heuristic search algorithm is local search

[Johnson, 1985]. First, we choose a graph. Then, we
evaluate �(e) for all e 2 E, and make the change e
for which �(e) is a maximum, provided it is positive.
We terminate search when there is no e with a posi-
tive value for �(e). As we visit network structures, we
retain l of them with the highest overall score. Using
decomposable metrics, we can avoid recomputing all
terms �(e) after every change. In particular, if nei-
ther xi, xj , nor their parents are changed, then �(e)
remains unchanged for all changes e involving these
nodes as long as the resulting network is acyclic. Can-

didates for the initial graph include the empty graph,
a random graph, a graph determined by one of the
polynomial algorithms described in the previous sec-
tion, and the prior network.

A potential problem with local search is getting stuck
at a local maximum. Methods for avoiding local max-
ima include iterated hill-climbing and simulated an-
nealing. In iterated hill-climbing, we apply local search
until we hit a local maximum. Then, we randomly
perturb the current network structure, and repeat the
process for some manageable number of iterations. At
all stages we retain the top l networks structures.

In one variant of simulated annealing described by
Metropolis et al. (1953), we initialize the system
at some temperature T0. Then, we pick some eligi-
ble change e at random, and evaluate the expression
p = exp(�(e)=T0). If p > 1, then we make the change
e; otherwise, we make the change with probability p.
We repeat this selection and evaluation process � times
or until we make � changes. If we make no changes in
� repetitions, then we stop searching. Otherwise, we
lower the temperature by multiplying the current tem-
perature T0 by a decay factor 0 <  < 1, and continue
the search process. We stop searching if we have low-
ered the temperature more than Æ times. Thus, this
algorithm is controlled by �ve parameters: T0; �; �; 
and Æ. Throughout the process, we retain the top l
structures. To initialize this algorithm, we can start
with the empty graph, and make T0 large enough so
that almost every eligible change is made, thus creat-
ing a random graph. Alternatively, we may start with
a lower temperature, and use one of the initialization
methods described for local search.

5 Evaluation Methodology

Our methodology for measuring the learning accuracy
of scoring metrics and search procedures is as follows.
We start with a given network, which we call the gold-
standard network. Next, we generate a database by
repeated sampling from the given network. Then, we
use a scoring metric and search procedure to identify
one or more high-scoring network structures. Next,
we use the database and prior knowledge to popu-
late the probabilities in the new networks, called the
learned networks. In particular, we set each proba-
bility p(xi = kj�i = j) to be the posterior mean of
�ijk given the database, computed under the assump-
tions of the scoring metric. Finally, we quantitate
learning accuracy by measuring the di�erence between
the joint probability distributions of the gold-standard
and learned networks. An advantage of our method
is that there exists a clear correct answer: the gold-
standard network. One argument against using our



method is that, by generating a database from a net-
work, we guarantee that the assumption of exchange-
ability (time invariance) holds, and thereby bias re-
sults in favor of our scoring metrics. We can, however,
simulate time varying databases in order to measure
the sensitivity of our methods to the assumption of ex-
changeability (although we do not do so in this paper).

A principled candidate for a measure of learning accu-
racy is expected utility. Namely, given a utility func-
tion, a series of decisions to be made under uncertainty,
and a model of that uncertainty (i.e., one ore more
Bayesian networks for U), we evaluate the expected
utility of these decisions using the gold-standard and
learned networks, and note the di�erence. This utility
function may include not only domain utility, but the
costs of probabilistic inference as well [Horvitz, 1987].
Unfortunately, it is diÆcult if not impossible to con-
struct utility functions and decision scenarios in prac-
tice. For example, a particular set of learned network
structures may be used for a collection of decisions
problems, some of which cannot be anticipated. Con-
sequently, researchers have used surrogates for di�er-
ences in utility, such as the mean square error, cross
entropy, and di�erences in structure.

In this paper, we use two surrogate measures: cross-
entropy and a structural di�erence. The cross-entropy
measure [Kullback and Leibler, 1951] reects how well
the learned structures will predict the next case,
whereas structural di�erence reects the degree to
which the learned structures have captured causal in-
teractions.

Our cross-entropy measure is as follows. Let q(U) and
p(U) denote the probability of an instance of U ob-
tained from the gold-standard network and learned
networks, respectively. We compute p(U) using Equa-
tion 2. The cross entropy H(q; p) is given by

H(q; p) =
X

x1;:::;xn

q(xi; : : : ; xn) log
q(xi; : : : ; xn)

p(xi; : : : ; xn)
(8)

Low values of cross entropy correspond to a learned
distribution that is close to the gold standard. In HGC
(1994a,c), we describe a relatively eÆcient method
for computing the cross entropy of two networks that
makes use of the network structures.

Our structural-di�erence measure is as follows. For
a single learned network, the structural di�erence we
use is

Pn
i=1 Æi, where Æi is the symmetric di�erence of

the parents of xi in the gold-standard network and the
parents of xi in the learned network. For multiple net-
works, we take the average of the structural-di�erence
scores, weighted by the relative posterior probabilities
of the learned networks.

In several of our experiments described in the next

section, we require a prior network. For these investi-
gations, we construct prior networks by adding noise
to the gold-standard network. We control the amount
of noise with a parameter �. When � = 0, the prior
network is identical to the gold-standard network, and
as � increases, the prior network diverges from the
gold-standard network. When � is large enough, the
prior network and gold-standard networks are unre-
lated. Let (BS ; BP ) denote a Bayesian network with
structure BS and probabilities BP . To generate the
prior network, we �rst add 2� arcs to the gold-standard
network, creating network structure BS1. When we
add an arc, we copy the probabilities in BP1 so as to
maintain the same joint probability distribution for U .
Next, we perturb each conditional probability in BP1

with noise. In particular, we convert each probability
to log odds, add to it a sample from a normal distribu-
tion with mean zero and standard deviation �, convert
the result back to a probability, and renormalize the
probabilities. Then, we create another network struc-
ture BS2 by deleting 2� arcs and reversing 2� arcs that
were present in the original gold-standard network.
Next, we perform inference using the joint distribu-
tion determined by network (BS1; BP1) to populate
the conditional probabilities for network (BS2; BP2).
For example, if x has parents Y in BS1, but x is a root
node in BS2, then we compute the marginal proba-
bility for x in BS1, and store it with node x in BS2.
Finally, we return (BS2; BP2) as the prior network.

6 Experimental Results

We have implemented the metrics and search algo-
rithms described in this paper. Our implementation
is in the C++ programming language, and runs un-
der Windows NTTM with a Pentium processor. We
have tested our algorithms on small networks (n � 5)
as well as the 35-node Alarm network for the domain
of ICU ventilator management [Beinlich et al., 1989].
Here, we describe some of the more interesting results
that we obtained using the Alarm network. In these
preliminary experiments, we have learned only single
network structures (l = 1).

To examine the e�ects of metric on learning accuracy,
we measured the cross entropy and structural di�er-
ence of learned networks with respect to the Alarm
network for several variants of the BDe metric as well
as a non-likelihood-equivalent variant of the BD met-
ric. The results are shown in Figure 1. The metrics
labeled BDe0, BDe2, and BDe4 correspond to the BDe
metric with prior networks generated from the Alarm
network with noise � = 0; 2; 4, respectively. The BDeu
metric is the special case of the BDe metric described
by Buntine (1991) where all instances of the joint space
are equally likely. (The prior-network structure in this
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Figure 1: Metric comparisons.

case is the empty graph). The K2 metric (not to be
confused with the K2 search algorithm) is the spe-
cial case of the BD metric described by CH where all
N 0
ijk = 1. This metric is not likelihood equivalent.

In this comparison, we used local search initialized
with a maximum branching and 10,000-case databases
sampled from the Alarm network. For each value
of equivalent sample size N 0 in the graph, the cross-
entropy and structural-di�erence values shown in the
�gure represent an average across �ve learning in-
stances, where in each instance we used a di�erent
database and (for the BDe2 and BDe4 metrics) a dif-
ferent prior network. We made the prior parameter �
a function of N 0|namely, � = 1=(N 0 + 1)|so that
it would take on reasonable values at the extremes of
N 0. (When N 0 = 0, reecting complete ignorance, all
network structures receive the same prior probability.
Whereas, when N 0 is large, reecting a high degree of
con�dence, the prior network structure receives a high
prior probability.) When computing the prior proba-
bilities of network structure for the K2 metric, we used
an empty prior network.

The qualitative behaviors of the BDe metrics were rea-
sonable. When � = 0|that is, when the prior network
was identical to the Alarm network|learning accuracy
increased as the equivalent sample size N 0 increased.
Also, learning accuracy decreased as the prior net-
work deviated further from the gold-standard network,
demonstrating the expected result that prior knowl-
edge is useful. In addition, When � 6= 0, there was a
value of N 0 associated with optimal accuracy, and this
value decreased as � increased (this e�ect is more pro-
nounced in the graph of structural di�erences). This
result is not surprising. Namely, ifN 0 is too large, then
the deviation between the true values of the parame-
ters and their priors degrade performance. On the
other hand, if N 0 is too small, the metric is ignoring
useful prior knowledge. Furthermore, as the deviation
between the prior and gold-standard network struc-
tures increase, learning should be optimal for lower

values of equivalent sample size. We speculate that
results of this kind can be used to calibrate users in
the assessment of N 0.

Quantitative results show that, for low values ofN 0, all
metrics perform about equally well, with K2 producing
slightly lower cross entropies and the BDe metrics pro-
ducing slightly lower structural di�erences. One ex-
ception is that the BDe metric outperformed all other
metrics for larger values of N 0, when the metric used
the gold standard as a prior network. These results
suggest that the expert should pay close attention to
the assessment of equivalent sample size when using
the BDe metric.

To investigate the e�ects of search initialization on
learning accuracy, we initialized local search with ran-
dom structures, prior networks for di�erent values of
�, a maximum branching, and the empty graph. The
results are shown in Figure 2. In this comparison, we
used the BDeu metric with N 0 = 16, � = 1=17, and a
10,000-case database. We created 100 random struc-
tures by picking orderings at random, and then, for
a given ordering, placing in the structure each pos-
sible arc with probability �=(1 + �). (This approach
produced a distribution of random network structures
that was consistent with the prior probability of net-
work structures as determined by Equation 5).

The curve in Figure 2 is a histogram of the local
maxima achieved with random-structure initialization.
Prior networks for both � = 0 and � = 4 produced
local maxima that fell at the extreme low end of this
curve. In addition, the maximum branching led to a lo-
cal maximum with relatively low cross entropy. These
results suggest that initialization with a prior network
can be bene�cial, even when the prior network di�ers
substantially from the gold standard. The results also
suggest that, if a prior network is not available, then a
maximum branching can be a good starting point for
search.

Finally, we investigated the e�ects of search algorithm
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Table 1: Cross entropy and learning times (mean � s.d.) for various search algorithms across 30 databases.

cross entropy structural di�erence learning time
K2opt 0.026 � 0.002 3.9 � 1.4 1.9 min
K2rev 0.218 � 0.009 139.3 � 1.7 2.9 min
local 0.029 � 0.005 45.0 � 7.8 2.1 min

iterative local 0.026�0.003 42.0 � 9.9 251 min
annealing 0.029 � 0.009 37.3 � 11.5 25 min
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Appendix: k-LEARN is NP-Complete

As mentioned in Section 4.2, we easily can translate
results in H�o�gen (1993) for PAC learning to show
that k-LEARN is NP-hard. In this section, we show
that k-LEARN is NP-complete, even when we use the
likelihood-equivalent BDe metric and the constraint of
prior equivalence.

In proving our result, we must be careful in specifying
the inputs to k-LEARN when the BDe metric is used.
These inputs are (1) the relative prior probabilities of
all network structures where each node has no more
than k parents, (2) a database, and (3) parameters
N 0
ijk for some node{parent pairs and some values of

i, j, and k. The input need only include enough pa-
rameters N 0

ijk so that a score can be computed for all
network structures where each node has no more than

k parents. Consequently, we do not need parameters
for nodes having more than k parents, nodes with par-
ent con�gurations that always have zero prior proba-
bilities, and values of i, j, and k for which there is no
corresponding data in the database. Also, we empha-
size that the parameters N 0

ijk must be derivable from
some joint probability distribution using Equation 4.

Given these inputs, we see from Equation 3, that
the BDe metric for any given network structure and
database can be computed in polynomial time. Con-
sequently, k-LEARN is in NP.

In the following sections, we show that k-LEARN is
NP-hard. In Section 7.1, we give a polynomial time
reduction from a known NP-complete problem to 2-
LEARN. In Section 7.2, we show that 2-LEARN is NP-
hard using the reduction from Section 7.1, and then
show that k-LEARN for k > 2 is NP-hard by reducing
2-LEARN to k-LEARN. In this discussion, we omit
conditioning on background information � to simplify
the notation.

7.1 Reduction from DBFAS to 2-LEARN

We show that 2-LEARN is NP-hard whenM(D;BS) is
the BDe metric by using a reduction from a restricted
version of the feedback arc set problem. The general
feedback arc set problem is stated in Garey and John-
son (1979) as follows:

FEEDBACK ARC SET

INSTANCE: Directed graph G = (V;A), positive in-
teger K � jAj.

QUESTION: Is there a subset A0 � A with jA0j � K
such that A0 contains at least one arc from every di-
rected cycle in G?

It is shown in Garvill (1977) that FEEDBACK ARC

SET remains NP-complete for directed graphs in
which no vertex has a total in-degree and out-degree
more than three. We refer to this restricted version as
DEGREE BOUNDED FEEDBACK ARC SET,
or DBFAS for short.

Given an instance of DBFAS consisting of G = (V;A)
and K, our task is to specify, in polynomial time, the
following components of the instance of 2-LEARN:

1. A variable set U

2. A database D

3. The relative prior probabilities of network struc-
tures



4. The necessary parameters N 0
ijk (see comment at

the beginning of this section)

5. A value p

Note that we need only specify relative prior probabil-
ities because, as discussed in Section 1, the metric is
arbitrary up to a proportionality constant. We then
show that this instance of 2-LEARN has a solution if
and only if the given instance of DBFAS has a solu-
tion. In the instance of DBFAS, we assume that no
vertex has in-degree or out-degree of zero. If such a
node exists, none of the incident edges can participate
in a cycle, and we can remove them all from the graph.

To help distinguish between the instance of DBFAS
and the instance of 2-LEARN, we adopt the following
convention. We use the term arc to refer to a directed
edge in the instance of DBFAS, and the term edge to
refer to a directed edge in the instance of 2-LEARN.

We construct the variable set U as follows. For each
node vi in V , we include a corresponding binary vari-
able vi in U . We use V to denote the subset of U that
corresponds to V . For each arc ai 2 A, we include �ve
additional binary variables ai1; : : : ; ai5 in U . We use
Ai to denote the subset of U containing these �ve vari-
ables, and de�ne A to be A1 [ : : : [ AjAj. We include
no other variables in U .

The database D consists of a single case C1 =
f1; : : : ; 1g.

The relative prior probability of every network struc-
ture is one. This assignment satis�es our constraint
of prior equivalence. From Equation 3 with database
D = C1 and relative prior probabilities equal to one,
the BDe metric|denoted MBDe(D;BS)|becomes

MBDe(C1; BS) =
Y
i

N 0
ijk

N 0
ij

(9)

where k is the state of xi equal to one, and j is the
instance of �i such that the state of each variable in
�i is equal to one. The reduction to this point is poly-
nomial.

To specify the necessary N 0
ijk parameters, we specify a

prior network and then compute the parameters using
Equation 4. From Equation 9, we have

MBDe(C1; BS) =
Y
i

p(xi = 1j�i = 1; : : : ; 1; Bh
SC
)

(10)
To demonstrate that the reduction is polynomial, we
show that the prior network can be constructed in
polynomial time, and that Equation 10 can be com-
puted from the prior network in polynomial time when
�i contains no more than two variables. We estab-
lish the time complexity of prior-network construction

vjvi

ak3

ak1 ak2 ak5h

ak4

h

h

h h

h

h

h

h

h

Figure 3: Subgraph of the prior net B corresponding
to the kth arc in A from vi to vj .

in the following paragraphs. Although general prob-
abilistic inference in a Bayesian network is NP-hard,
in Section 7.3 (Theorem 12), we show that each prob-
ability in Equation 10 can be inferred from the prior
network in constant time due to the special structure
of the network.

We denote the prior Bayesian network B = (BS ;BP ).
The prior network B contains both hidden nodes,
which do not appear in U , and visible nodes which
do appear in U . Every variable xi in U has a corre-
sponding visible node in B which is also denoted by
xi. There are no other visible nodes in B. For every
arc ak from vi to vj in the given instance of DBFAS,
B contains ten hidden binary nodes and the directed
edges as shown in Figure 3.

In the given instance of DBFAS, we know that each
node vi in V is adjacent to either two or three nodes.
For every node vi in V which is adjacent to exactly
two other nodes in G, there is a hidden node hi in B
and an edge from hi to xi. There are no other edges
or hidden nodes in B.

Every visible node in B is a sink and has exactly three
hidden node parents, and every hidden node is a source
with either one or two children. We use hij to denote
the hidden node parent common to visible nodes xi
and xj . We create the parameters BP as follows. For
every hidden node hij we set

p(hij = 0) = p(hij = 1) =
1

2

Each visible node in B is one of two types. The type of
a node is de�ned by its conditional probability distri-
bution. Every node ai5 in B (corresponding to the �fth
variable created in U for the ith arc in the instance of
DBFAS) is a type II node, and all other nodes are type
I nodes. A type I node has the conditional probability



distribution shown in Table 2.

Table 2: Conditional probability distribution for a
type I node.

hij hik hil p(xi = 1jhij ; hik; hil)
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

We say that two variables in U are prior siblings if the
corresponding nodes in the prior network B share a
common hidden parent. We use Sxi to denote the set
of all variables in U which are prior siblings of xi.

For each type II node ai5, we de�ne the distinguished
siblings as the set Dai5 = fai3; ai4g � Sai5 . Table
3 shows the conditional probability distribution of a
type II node xi with distinguished siblings fxj ; xkg.3

Table 3: Conditional probability distribution for a
type II node xi with Dxi = fxj ; xkg.

hij hik hil p(xi = 1jhij ; hik; hil)
0 0 0 1

3
0 0 1 1
0 1 0 2

3
0 1 1 0
1 0 0 2

3
1 0 1 0
1 1 0 1

3
1 1 1 0

There are jV j + 5jAj visible nodes in B, each visible
node has at most three hidden node parents, and each
probability table has constant size. Thus, the con-
struction of B takes time polynomial in the size of the
instance of DBFAS.

We now derive the value for p. From Equation 10, we
obtain

MBDe(C1; BS)

=
Y
i

p(xi = 1j�i = 1; : : : ; 1; Bh
SC

)

=
Y
i

Æ
3�j�i\Sxi j �

p(xi = 1j�i = 1; : : : ; 1; Bh
SC

)

Æ3�j�i\Sxi j

3The type II node ai5 in Figure 1 is shaded and has small
markers to indicate that ai3 and ai4 are its distinguished
siblings.

= Æ

�
3n�
P

i
j�i\Sxi j

�Y
i

p(xi = 1j�i = 1; : : : ; 1; Bh
SC

)

Æ3�j�i\Sxi j

� Æ

�
3n�
P

i
j�i\Sxi j

�Y
i

s
0(xij�i; Si) (11)

where Æ < 1 is a positive constant that we shall �x to
be 15=16 for the remainder of the paper.

Let � be the total number of prior sibling pairs as
de�ned by B, and let  be the number of prior sibling
pairs which are not adjacent in BS . The sum

P
i j�i\

Sxi j is the number of edges in BS which connect prior
sibling pairs and is therefore equal to ��. Rewriting
Equation 11, we get

MBDe(C1; BS) = Æ(3n�(��))
Y
i

s0(xij�i; Si)

= Æ(3n��) � Æ
Y
i

s0(xij�i; Si)

= c0 � Æ
Y
i

s0(xij�i; Si) (12)

We now state 3 lemmas, postponing their proofs to
Section 7.3. A network structure BS is a prior sibling

graph if all pairs of adjacent nodes are prior siblings.
(Not all pairs of prior siblings in a prior sibling graph,
however, need be adjacent.)

Lemma 1 Let BS be a network structure, and let

BS0 be the prior sibling graph created by removing

every edge in BS which does not connect a pair of

prior siblings. Then it follows that MBDe(C1; BS0) �
MBDe(C1; BS)

Throughput the remainder of the paper, the symbol �
stands for the constant 24=25.

Lemma 2 If BS is a prior sibling graph, then for ev-

ery type I node xi in BS, if �i contains at least one

element, then s0(xij�i; Si) is maximized and is equal

to m1 = 64=135. If �i = ;, then s0(xij�i; Si) = � �m1.

Lemma 3 If BS is a prior sibling graph, then for

every type II node xi in BS, if �i = Dxi, where

Dxi is the set of two distinguished siblings of xi, then
s0(xij�i; Si) is maximized and is equal to m2 = 40=81.
If �i 6= Dxi then s0(xij�i; Si) � � �m2.

Finally, we de�ne p in the instance of 2-LEARN as

p = c0m
jV j
1

�
m4

1m2

�jAj
�K (13)

where m1 and m2 are de�ned by Lemma 2 and 3 re-
spectively, and c is the constant from Equation 12.

The value for p can be derived in polynomial time.
Consequently, the entire reduction is polynomial.
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Figure 4: Optimal con�guration of the edges incident
to the nodes in Ak corresponding to the arc from vi to
vj .

7.2 Proof of NP-Hardness

In this section, we �rst prove that 2-LEARN is NP-
hard using the reduction from the previous section.
Then, we prove that k-LEARN is NP-hard for all
k > 1, using a reduction from 2-LEARN.

The following discussion and lemma explain the selec-
tion of p made in Equation 13, which in turn facilitates
the proof that 2-LEARN is NP-hard. Let k be the
number of prior sibling pairs fxi; xjg which are not
adjacent in BS , where at least one of fxi; xjg is in Ak.
We now argue that

P
k k = , where  is the total

number of prior sibling pairs not adjacent in BS . First
note that, as de�ned by B, the prior siblings Svi for ev-
ery node vi 2 V satisfy Svi � A, and the prior siblings
Sakj for every node akj 2 Ak satisfy Sakj � V [ Ak
(see Figure 1). Thus, for any prior sibling pair fxi; xjg,
there exists an Ak such that either both xi and xj are
in Ak, or exactly one of fxi; xjg is in Ak and the other
is in V . Consequently, we have

P
k k = .

We can now express Equation 12 as

MBDe(C1; BS)

= c
0

"Y
xi2V

s
0(xij�i; Si)

#24Y
j

Æ
j
Y

xi2Aj

s
0(xij�i; Si)

3
5

= c
0

"Y
xi2V

s
0(xij�i; Si)

#"Y
j

t(Aj ; j)

#
(14)

where t(Aj ; j) = Æj
Q

xi2Aj
s0(xij�i; Si).

Lemma 4 Let BS be a prior sibling graph. If each

node in Ak is adjacent to all of its prior siblings, and

the orientation of the connecting edges are as shown

in Figure 4, then t(Ak; k) is maximized and is equal

to m4
1 �m2. Otherwise, t(Ak ; k) � � �m4

1 �m2.

Proof: In Figure 4, every type I node in Ak has at
least one prior sibling as a parent, and the single type

II node has its distinguished siblings as parents. Thus,
by Lemmas 2 and 3, the score s0(xij�i; Si) for each
node xi 2 Ak is maximized. Furthermore, every pair
of prior siblings are adjacent. Thus, we have

t(Aj ; j) = Æj
Y

xi2Aj

s0(xij�i; Si)

= Æ0 �m1 �m1 �m1 �m1 �m2

Suppose there exists another orientation of edges in-
cident to the nodes in Ak such that that t(Ak ; k) >
� � m4

1 � m2. Because Æ < � ( 1516 < 24
25 ), every pair

of prior siblings must be adjacent in this hypothetical
con�guration. Furthermore, every node in Ak must
achieve its maximum score, else the total score will be
bounded above by � �m4

1 �m2. From Lemma 3, in order
for ak5 to achieve its maximum score it must have its
distinguished siblings ak3 and ak4 as parents. Because
each node can have at most two parents, vj must have
ak5 as its parent. Both ak3 and ak4 must have ak2 as a
parent, else they would be root nodes and by Lemma
2 would not attain a maximum score. Repeating this
argument, ak2 must have ak1 as a parent and ak1 must
have vi as a parent. Because the resulting con�gura-
tion is identical to Figure 4, the lemma follows. 2

The next two theorems prove that 2-LEARN is NP-
hard.

Theorem 5 There exists a solution to the 2-

LEARN instance constructed in Section 7.1 with

MBDe(C1; BS) � p if there exists a solution to the

given DBFAS problem with A0 � K.

Proof: Given a solution to DBFAS, create the so-
lution to 2-LEARN as follows: For every arc ak =
(vi; vj) 2 A such that ak 62 A0, insert the edges in BS

between the corresponding nodes in Ak [vi [vj as de-
scribed in Lemma 4. For every arc ak = (vi; vj) 2 A

0,
insert the edges in BS between the corresponding
nodes in Ak [ vi [ vj as described in Lemma 4, except
for the edge between ak1 and ak2 which is reversed and
therefore oriented from ak2 to ak1.

To complete the proof, we must �rst show that BS is
a solution to the 2-LEARN instance, and then show
that MBDe(C1; BS) is greater than or equal to p.

Because each node in BS has at most two parents, we
know BS is a solution as long as it is acyclic. Suppose
BS contains a cycle. Because there is no cycle con-
tained within any set Ak , there must exist a sequence
of nodes from V contained in this cycle such that for
any pair of consecutive nodes (vi; vj) in the sequence,
there is a directed path from vi to vj for which every



intermediate node is in A. However, we created the
instance of 2-LEARN such that a directed path of this
type exists if and only if (vi; vj) 62 A0. This implies
there is a cycle in G for which none of the edges are
contained in A0, contradicting the fact that we have a
solution to DBFAS.

We now deriveMBDe(C1; BS). Let A
opt be the subset

of Ak sets which correspond to the arcs in A n A0.
Rewriting Equation 14 we get

MBDe(C1; BS)

= c0

" Y
xi2V

s0(xij�i; Si)

#
�

2
4 Y
Aj2Aopt

t(Aj ; j)

3
5

�

2
4 Y
Ak2AnAopt

t(Ak; k)

3
5

Every node vi 2 V has at least one prior sibling node as
a parent because each node in the instance of DBFAS
has an in-degree of at least one. Furthermore, Lemma
4 guarantees that for every Ak in Aopt, t(Aj ; j) equals
m4

1 �m2. Thus, we have

MBDe(C1; BS) (15)

= c0m
jVj
1

�
m4

1 �m2

�jAoptj

2
4 Y
Ak2AnA

opt

t(Ak; k)

3
5

= c
0
m
jV j
1

�
m

4

1 �m2

�jAnA0j

2
4 Y
Ak2AnA

opt

t(Ak; k)

3
5

Now consider any Ak in A n Aopt. All prior sibling
pairs for which at least one node is in this set are
adjacent in BS , so k is zero. Furthermore, every node
in this set attains a maximum score, except for the
type I node ak2 which by Lemma 2 attains a score of
� �m1. Hence we conclude that t(Ak ; k) is equal to
m4

1 �m2 � � and therefore

MBDe(C1; BS)

= c0m
jV j
1

�
m4

1 �m2

�jAnA0j �
m4

1 �m2 � �
�jAnAoptj

= c0m
jV j
1

�
m4

1 �m2

�jAnA0j �
m4

1 �m2

�jA0j
�jA

0j

= c0m
jV j
1

�
m4

1 �m2

�jAj
�jA

0j

Because � < 1 and jA0j � K we conclude that
MBDe(C1; BS) � p. 2

Theorem 6 There exists a solution to the given DB-

FAS problem with A0 � K if there exists a solution to

the 2-LEARN instance constructed in Section 7.1 with

MBDe(C1; BS) � p.

Proof: Given the solution BS to the instance of 2-
LEARN, remove any edges in BS which do not connect
prior siblings. Lemma 1 guarantees that the BDe score
does not decrease due to this transformation.

Now create the solution to DBFAS as follows. Recall
that each set of nodes Ak corresponds to an arc ak =
(vi; vj) in the instance of DBFAS. De�ne the solution
arc set A0 to be the set of arcs corresponding to those
sets Ak for which the edges incident to the nodes in
Ak are not con�gured as described in Lemma 4.

To complete the proof, we �rst show that A0 is a solu-
tion to DBFAS, and then show that jA0j � K. Sup-
pose that A0 is not a solution to DBFAS. This means
that there exists a cycle in G which does not pass
through an arc in A0. For every arc (vi; vj) in this
cycle, there is a corresponding directed path from vi
to vj in BS (see Figure 4). But this implies there
is a cycle in BS which contradicts the fact that we
have a solution to 2-LEARN. From Lemma 4 we know
that each set Ak which corresponds to an arc in A0

has t(Ak; k) bounded above by � �m4
1 �m2. Because

MBDe(C1; BS) � p, we conclude from Equation 14
that there can be at most K such arcs. 2

Theorem 7 k-LEARN with MBDe(D;BS) satisfying
prior equivalence is NP-hard for every integer k > 1.

Proof: Because 2-LEARN is NP-hard, we establish
the theorem by showing that any 2-LEARN problem
can be solved using an instance of k-LEARN.

Given an instance of 2-LEARN, an equivalent instance
of k-LEARN is identical to the instance of 2-LEARN,
except that the relative prior probability is zero for
any structure that contains a node with more than two
parents. Note that no new parameters N 0

ijk need be
speci�ed. It remains to be shown that this assignment
satis�es prior equivalence. We can establish this fact
by showing that no structure containing a node with
more than two parents is isomorphic to a structure for
which no node contains more than two parents.

In HGC (1994c), it is shown that for any two isomor-
phic structures BS1 and BS2 , there exists a �nite se-
quence of arc reversals in BS1 such that (1) after each
reversal BS1 remains isomorphic to BS2 , (2) after all
reversals BS1 = BS2 , and (3) if the edge vi ! vj is the
next edge to be reversed, then vi and vj have the same
parents with the exception that vi is also a parent of
vj . It follows that after each reversal, vi has the same
number of parents as vj did before the reversal, and
vj has the same number of parents as vi did before the
reversal. Thus, if there exists a node with l parents
in some structure BS , then there exists a node with l
parents in any structure which is isomorphic to BS . 2
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Figure 5: Two portions of B for which Theorem 8
applies. s1, s2 and s3 are the elements of Sxi . White
nodes are hidden and black nodes are members of �i.
In both (a) and (b), xi is d-separated from any node
outside the dashed line.

7.3 Proof of Lemmas

To prove Lemmas 1 through 3, we derive s0(xij�i; Sxi)
for every pair fxi;�ig. Let xi be any node. The set
�i must satisfy one of the following mutually exclusive
and collectively exhaustive assertions:

Assertion 1 For every node xj which is both a parent
of xi and a prior sibling of xi (i.e. xj 2 �i \Sxi),
there is no prior sibling of xj which is also a parent
of xi.

Assertion 2 There exists a node xj which is both a
parent of xi and a prior sibling of xi, such that
one of the prior siblings of xj is also a parent of
xi.

The following theorem shows
that to derive s0(xij�i; Sxi) for any pair fxi;�ig for
which �i satis�es Assertion 1, we need only compute
the cases for which �i � Sxi . Figure 5 shows two ex-
amples of the relevant portion of a prior network for
which the theorem applies.

Theorem 8 Let xi be any node in BS. If �i satis�es

Assertion 1, then s0(xij�i; Sxi) = s0(xij�i \ Sxi ; Sxi).

Proof: From Equation 11, we have

s0(xij�i; Sxi) =
p(xij�i; B

e
SC
)

Æ3�j�i\Sxi j
(16)

Thus, the theorem follows if we show that xi is d-
separated from all parents which are not prior sib-
lings in B once the parents which are prior siblings
are known.

Suppose there exists a parent xk which is not a prior
sibling of xi and is not d-separated from xi given �i \

Sxi . This implies that there is an active trail from
xi to xk in B once we condition on these nodes. Any
path|active or nonactive|from a nonsibling parent
to xi must pass through an element of Sxi . Because
each node in Sxi is a sink, any active path from xk
to xi must pass through some node xj from �i \ Sxi .
Because �i satis�es Assertion 1, however, we know
that none of the siblings of xj are in �i. Hence, no
active path from xk to xi can pass through xj . 2

For the next two theorems, we use the following
equalities.4

p(hij ; hik; hil) = p(hij)p(hik)p(hil) (17)

p(hij ; hik; hiljxj) = p(hij jxj)p(hik)p(hil) (18)

p(hij ; hik; hiljxj ; xk) = p(hij jxj)p(hikjxk)p(hil) (19)

p(hij = 0jxi = 1) =
2

3
(20)

Equation 17 follows because each hidden node is a root
in B. Equation 18 follows because any path from xj to
either hik or hil must pass through some node x 6= xj
which is a sink. Equation 19 follows from a similar
argument, noting from the topology of B that x 62
fxj ; xkg. Equation 20 follows from Tables 1 and 2,
using the fact that p(hij = 0) equals 1=2.

Theorem 9 Let xi be any type I node in BS for which

�i satis�es Assertion 1.

1. If j�i \ Sxi j = 0 then s0(xij�i; Sxi) = � �m1

2. If j�i \ Sxi j = 1 then s0(xij�i; Sxi) = m1

3. If j�i \ Sxi j = 2 then s0(xij�i; Sxi) = m1

Proof: Using Equations 17 through 20 and Table 2,
we obtain the following relations:

1. If j�i \ Sxi j = 0 then p(xi = 1) = Æ3 � � �m1

2. If j�i\Sxi j = fxjg then p(xi = 1jxj = 1) = Æ2�m1

3. If j�i\Sxi j = fxj ; xkg then p(xi = 1jxj = 1; xk =
1) = Æ �m1

The theorem then follows from Equation 16. 2

4We drop the conditioning event Be
SC

and � to simplify

notation.
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Figure 6: Portion of B for which Theorem 11 applies.
White nodes are hidden and black nodes are members
of �i. Node xi has parents xj and xk, where xj 2 Sxi
and xk 2 Sxj . In this case, xi is not d-separated from
its non-sibling parent.

Theorem 10 Let xi be any type II node in BS for

which �i satis�es assertion 1.

1. If j�i \ Sxi j = 0 then s0(xij�i) = �2 �m2

2. If j�i \ Sxi j = 1 then s0(xij�i) = � �m2

3. If j�i \ Sxi j = 2 and �i 6= Dxi then s0(xij�i) =
� �m2

4. If �i = Dxi then s0(xij�i) = m2

Proof: Using Equations 17 through 20 and Table 3,
we obtain the following relations:

1. If j�i \ Sxi j = 0 then p(xi = 1) = Æ3 � �2 �m2

2. If j�i \ Sxi j = fxjg then p(xi = 1jxj = 1) =
Æ2 � � �m2

3. If j�i \ Sxi j = fxj ; xkg and fxj ; xkg 6= Dxi then
p(xi = 1jxj = 1; xk = 1) = Æ � � �m2

4. If �i = fxj ; xkg and fxj ; xkg = Dxi then p(xi =
1jxj = 1; xk = 1) = Æ �m2

The theorem then follows from Equation 16. 2

Now we show that if Assertion 2 holds for the parents
of some node, then we can remove the edge from the
parent which is not a sibling without decreasing the
score. Once this theorem is established, the lemmas
follow.

Figure 4 shows the prior network B when Assertion 2
holds for a node xi.

Theorem 11 Let xi be any node. If �i = fxj ; xkg,
where xj 2 Sxi and xk 2 Sxj , then s0(xijxj) �
s0(xijxj ; xk).

Proof: For any node we have

p(xi = 1jxj = 1; xk = 1)

=
p(xi = 1)p(xk = 1jxi = 1)p(xj = 1jxi = 1; xk = 1)

p(xk = 1)p(xj = 1jxk = 1)

Because xi and xk are not prior siblings, it follows that
p(xkjxi) = p(xk). Therefore, we have

p(xi = 1jxj = 1; xk = 1)

= p(xi = 1) �
p(xj = 1jxi = 1; xk = 1)

p(xj = 1jxk = 1)

Expressing this equality in terms of s0(xij�i; Sxi), not-
ing that xi has only one prior sibling as a parent, and
canceling terms of Æ, we obtain

s0(xijfxj ; xkg; Sxi) = s0(xij;; Sxi)
s0(xj jfxi; xkg; Sxj )

s0(xj jfxkg; Sxj )
(21)

If xj is a type I node, or if xj is a type II node
and xi and xk are not its distinguished siblings,
then s0(xj jfxi; xkg; Sxj ) equals s

0(xj jfxkg; Sxj ). Thus,
from Equation 21, we have

s0(xijfxj ; xkg; Sxi) = s0(xij;; Sxi) < s0(xijfxjg; Sxi)
(22)

which implies that we can improve the local score of
xi by removing the edge from xk .

If xj is a type II node, and Dxj = fxi; xkg,
then s0(xj jfxi; xkg; Sxj ) equals (1=�)�s

0(xj jfxkg; Sxj ).
Also, from Equation 21, we have

s0(xijfxj ; xkg; Sxi) = s0(xij;; Sxi)
1

�
= s0(xijfxjg; Sxi)

(23)
Therefore, we can remove the edge from xk without
a�ecting the score of xi. 2

The preceding arguments also demonstrate the follow-
ing theorem.

Theorem 12 For any pair fxi;�ig, where j�ij � 2,
the value p(xi = 1j�i) can be computed from B in

constant time when the state of each of the variable in

�i is equal to one.


