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ABSTRACT

Admixture mapping is a gene mapping approach used for the identification of genomic
regions harboring disease susceptibility genes in the case of recently admixed populations
such as African Americans. We present a novel method for admixture mapping, called
admixture aberration analysis (AAA) that uses a DNA pool of affected admixed individuals.
We demonstrate through simulations that AAA is a powerful and economical mapping
method under a range of scenarios, capturing complex human diseases such as hypertension
and end-stage kidney disease. The method has a low false-positive rate and is robust to
deviation from model assumptions. Finally, we apply AAA on 600 prostate cancer-affected
African Americans, replicating a known risk locus. Simulation results indicate that the
method can yield over 96% reduction in genotyping. Our method is implemented as a Java
program called AAAmap and is freely available at http://bioinfo.cs.technion.ac.il/AAAmap.

Key words: computational molecular biology, genetic mapping, genetic variation, machine

learning, Markov chains.

1. INTRODUCTION

Many complex disease studies are currently being conducted using population-based genetic

association (The Wellcome Trust Case Control Consortium, 2007). The premise of this method is that

affected individuals carry a common variant of a disease-susceptible gene that is in linkage disequilibrium

with sampled markers. Hence, the susceptibility locus can be detected via the indirect association between the

sampled markers and the disease status. In order to guarantee a sufficiently high power in association studies,

thousands of cases and controls are sampled using dense marker panels.

Admixture mapping, also known as mapping by admixture linkage disequilibrium (MALD), offers a

more economical alternative to association studies in certain circumstances without sacrificing the statis-

tical power (Smith and O’Brien, 2005). MALD is a gene mapping approach used for the identification of

genomic regions harboring disease susceptibility genes in the case of recently admixed populations, i.e.,

populations that are an admixture of several ancestral populations. African Americans are an example of an

admixed population, having both European and African ancestries. The method is applicable when the

prevalence of a disease is significantly different between the ancestral populations from which the admixed

population was formed. When such a disease is studied, admixed individuals carrying the hereditary disease
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are expected to show an elevated genomic contribution from the ancestral population that has the higher

prevalence of the disease around the disease gene loci. A MALD study is comprised of three main steps.

First, a panel of ancestry informative markers (AIM) that differentiate well between ancestral populations is

designed. Next, either cases, or both cases and controls are individually genotyped using the AIM panel,

and the mosaic of ancestries of each individual is inferred. Finally, the inferred ancestral profiles are

scanned in search for an aberration towards the ancestral population with the higher risk, as expected to

appear near the disease locus.

The MALD method successfully discovered multiple risk alleles for prostate cancer (Freedman et al.,

2006; Haiman et al., 2007), a disease with a higher incident rate in Africans compared to Europeans, and a

candidate locus for end-stage kidney disease in African Americans (Kao et al., 2008). Diseases of similar

characteristics include stroke, hypertension, and multiple sclerosis; a more comprehensive list of diseases

suitable for admixture mapping appears in the method’s review by Smith and O’Brien (2005). In all of

these cases, the statistical efficiency of MALD stems from the fact that only a few thousand ancestry

informative markers are required in order to accurately infer the ancestry of the admixed individuals (Smith

et al., 2004). These genetic markers are selected via criteria such as Shannon information content, Fisher

information content, or expected mutual information (Rosenberg et al., 2003; Bercovici et al., 2008).

Moreover, only a few hundred cases are required for the identification of the ancestral aberration around the

disease locus (Reich and Patterson, 2005).

In this article, we present a novel approach for admixture mapping that considerably reduces the

genotyping cost of disease studies by applying admixture aberration analysis (AAA) on pooled DNA of

affected admixed individuals. Our analysis detects divergence of allele distribution in a pool of samples

near a disease locus without the intermediate step of ancestry inference per individual. The inherent

aberration in admixture around the disease locus shifts the sampled allele frequencies towards the distri-

bution of the alleles in the ancestry with the higher risk. It is the examination of this shift, evaluated through

the estimation of allele frequencies in the pooled sample, that provides the means for our pooled mapping

method (Fig. 1).

Current MALD studies mainly differ in the informative panel of choice and the method used for ancestry

inference. Patterson et al. (2004) presented a method that employs a hidden Markov model (HMM) for the

estimation of ancestry along the genome. The HMM was integrated into a Markov chain Monte Carlo

(MCMC) method to account for the uncertainties in model parameters. Tang et al. (2006) extended

previous methods by modeling linkage-disequilibrium in the ancestral populations using a Markov Hidden

Markov model (MHMM), namely, dependency between adjacent markers evident in the ancestral popu-

lations was modeled. An inference framework developed in Bercovici and Geiger (2009) enables the

incorporation of more complex probability models that account for linkage disequilibrium in the ancestral

populations. An earlier work by Chakraborty and Weiss (1988) suggested mapping by directly assessing

divergence from admixture linkage-disequilibrium, as expected near disease loci.

DNA pooling has been suggested as a practical way to reduce the cost of large-scale association studies

(Sham et al., 2002). Rather than analyzing thousands of cases and controls that were sampled separately,

association analysis was first applied on pooled cases and pooled controls in the work of Arnheim et al.

(1985). Steer et al. (2006) have recently demonstrated the feasibility of pooled association studies using

high-resolution microarrays for rheumatoid arthritis. Zeng and Lin (2005) examined the analysis of pooled

DNA, extending the single-marker association methods to haplotype association using a likelihood-based

approach. Kirov et al. (2006) investigated the accuracy by which the allele frequency difference between

pools can be estimated. This work was extended by Wilkening et al. (2007) for higher resolution SNP

microarrays of 250K. Pooling was also used in QTL studies. For example, Darvasi and Soller (1994)

presented a statistical test of marker-QTL linkage based on selective pools of individuals with extreme

quantitative trait values.

The main contribution of this article is the introduction of pooling to admixture mapping, and the

demonstration of its power to the mapping of disease susceptibility loci. Pooling is a far more effective tool

for admixture mapping in comparison to association studies. In the case of a recently formed admixed

population, the linkage-disequilibrium patterns generated by the admixture process stretch over regions of

several centimorgans, resulting in a wider effect which is easier to detect. In addition, using ancestry

informative markers improves the ability to locate deviations of LD and marker distribution from those

expected by the admixture process alone. The efficiency of our pooled AAA method has been established

through simulation and via analysis of diseases that are currently being studied using the non pooled
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MALD approach. Specifically, we first develop the aberration analysis method based on a window of

markers while accounting for linkage disequilibrium in the ancestral populations. We then determine the

method’s power through simulations. We show, for example, that a power of over 70% is achieved in a

simulated study of an African American population carrying a disease with ethnicity relative risk of 1.3,

comparable with end-stage kidney disease, using seven pools of 200 individuals with four repetitions. The

results in this case indicate a more than 25-fold decrease in genotyping versus a non-pooled MALD

method. We also demonstrate the strength of our pooled method on a sample of African American cases of

prostate cancer, replacing 600 independently measured individuals with a single simulated pool. The result

demonstrate that a significant signal (LOD 7.2) is obtained near the risk locus found by Amundadottir et al.

(2006) and Freedman et al. (2006). Finally, we discuss the robustness of our method to measurement errors

and to deviation from model assumptions.

Our method is implemented as a Java program called AAAmap and is freely available at http://bioinfo

.cs.technion.ac.il/AAAmap.

2. METHODS

2.1. Definitions and model assumptions

The genome of a recently admixed individual is a mosaic of long, single ancestry, chromosomal seg-

ments. We use the following definitions to describe these segments in admixed individuals. An admixed

chromosome is a chromosome that originated from more than one ancestral population. A post admixture

recombination (PAR) point is a recombination point in which either two chromosomes from different

populations crossed, or two chromosomes crossed where at least one of the chromosomes is an admixed

chromosome. A (PAR) block is a chromosomal segment limited by two consecutive PAR points, or by a

chromosome edge and its closest PAR point. An immediate implication of these definitions is that every

PAR block originated from a single ancestral population, designated as the ancestry of the block, for

otherwise the block would have been further divided. In our model, we assume that the ancestry of PAR

blocks are mutually independent. We further assume that given the ancestry of a PAR block, the markers

within that PAR block are independent of the markers outside the PAR block and are determined strictly

FIG. 1. An illustration of admix-

ture aberration. (a) Two distinct

ancestral populations, X and Y, ex-

pressing a different distribution of

alleles at a particular location. The

greater the distance between allele

distributions, the more informative

the marker is regarding ancestry. (b)

A sample of admixed individuals,

descendants of the ancestral popu-

lations X and Y. In case of a disease

with higher prevalence in popula-

tion X, the affected sample will ex-

hibit a higher contribution from

population X near the disease locus,

as indicated by the graph on the left.

Hence, in the affected individuals,

the distributions of alleles near the

disease locus bears a higher resem-

blance to that of population X. The

healthy admixed individuals show a

contribution of populations X and Y

that corresponds to the admixture

process.
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according to the distribution that corresponds to the ancestry of that PAR block (Bercovici et al., 2008).

The markers within a PAR block are assumed to be dependent, accounting for the background linkage-

disequilibrium in the ancestral populations.

Consider an admixed population that originated from two ancestral populations X and Y. Each ancestral

population may have a different prevalence for a disease. A common way to characterize the disease risk

attributed to the ancestral profile is by the ethnicity relative risk (ERR) which measures the increased risk

due to an additional allele from population Y. Under a multiplicative disease model, ERR is defined as

r¼ w(XY)

w(XX)
¼ w(YY)

w(XY)
(1)

where c(�) is the probability of the disease given that the ancestry pair at the disease susceptibility locus is

either XX, XY, or YY.

When studying an admixed population with an hereditary disease characterized by an ERR= 1, the

regions around the disease loci are expected to show an aberration towards the ancestry with the higher risk,

shifting the distribution of nearby allele frequencies. Our method scans through the genome, computing for

each examined location the ratio between the likelihood of the measured allele frequencies under the

assumption of a close disease locus and the likelihood of the measured frequencies under the null as-

sumption of no disease:

K0¼
P(Sjnearby disease locus)

P(Sjno disease)
(2)

where S are the observed allele frequencies. Since the computation of this likelihood becomes intractable as

the number of samples and markers grow, we approximate these probabilities via the multivariate central

limit theorem over a window of markers. This approximate measure, denoted L, is used in the reported

results. In the remaining method section, we derive the distribution of alleles under the two hypothesis, and

the L score. We first assume a window with a single marker and then extend the results to multi-marker

windows.

2.2. Single marker analysis

We first compute the probability P(Jjd) of a bi-allelic marker J 2 f0, 1g of an individual, given the

individual is affected (denoted by d). This probability is given by

P(Jjd)¼P(Jj�rr, d) � P(�rrjd)þP(Jjr, d) � P(rjd) (3)

where r indicates that at least one recombination has occurred between the disease locus and the location of

allele J since the first admixture event, and �rr is the complementary event.

The occurrence of PAR points can be modeled as a Poisson process with rate l which is derived from the

admixture dynamics. In the case of a hybrid-isolated admixture model (Long, 1991), l roughly corresponds

to the number of generations since the admixture began. Hence, under the assumption that the event of a

recombination is independent of the disease status, the probability of at least one PAR point between

location l1 and l2 is

P(rjd)¼P(r)¼ 1� e� k�jl1 � l2j (4)

To compute P(Jjr,d) in Equation 3, we note that given r, namely that at least one PAR point occurred

between sampled allele J and the disease locus, the distribution of the allele is determined solely by the

ancestry at the location and the admixture coefficient P(Q):

P(Jjr, d)¼
X

Q

P(JjQ, r, d) � P(Qjr, d) (5)

¼
X

Q

P(JjQ) � P(Q)

where Q is the ancestry at the marker location.

To compute P(Jj�rr, d) in Equation 3, namely when assuming no PAR point exist between the disease

locus and the sampled allele, the distribution of the allele is given by
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P(Jj�rr, d)¼
X

Q0
P(JjQ0) � P(Q0jd) (6)

where Q0 is the ancestry at the disease locus. The above equality relies on the assumption that given

the ancestry of the chromosomal segment containing marker J, the affection status and the allele are

independent, an assumption that is common in admixture mapping models (Patterson et al., 2004). The

probability P(Q0jd) of the ancestry of an affected individual at disease locus Q0 is formalized in terms of

the multiplicative disease model. Let Z 0 2 fXX, XY , YYg denote the ancestry pair at the disease locus. The

probability of ancestry Q0 given the disease can be written as

P(Q0 ¼Xjd)¼
X

Z 0
P(Q0 ¼XjZ 0, d) � P(Z 0jd) (7)

¼P(Z 0 ¼XXjd)þ P(Z 0 ¼XY jd)

2

The probability P(Z0 ¼XXjd) is computed from c(�) as follows:

P(Z 0 ¼XXjd)¼ P(DjZ 0 ¼XX) � P(Z 0 ¼XX)P
Z 0 P(djZ 0) � P(Z 0)

¼ w(XX) � p2
X

w(XX) � p2
X þ 2w(XY)pX(1� pX)þw(YY)(1� pX)2

where pX is the a priori probability of ancestry X in an admixed individual. The probabilities P(Z0 ¼XYjd)

and P(Z0 ¼ YYjd) are derived in a similar fashion. This completes the derivation of all terms of Equation 3.

We continue by considering a set of independent marker observations J1, J2, . . . Jn sampled from n

affected admixed individuals. We need to compute the likelihood ratio L of these observations, namely the

probability of the observations under the hypothesis of a nearby disease susceptibility locus divided by the

probability under the null hypothesis of no disease

L¼ P(J1, . . . , JnjH1)

P(J1, . . . , JnjH0)

As we assume independent and identically distributed Ji, we conclude that

n

fJijJi¼ 1gj j

� �
� P(J1, . . . , Jn)¼P(Sn)

where Sn¼
P

i Ji. Hence, the likelihood ratio can be rewritten as follows

L¼ P(J1, . . . , JnjH1)

P(J1, . . . , JnjH0)
¼ P(SnjH1)

P(SnjH0)

We now explicate how to approximate the probabilities P(SnjH0) and P(SnjH1).

According to the central limit theorem, the standardized sum of n observations converges to the standard

normal distribution N(0,1) as n grows

S�n¼
P

Ji� n � l
r
ffiffiffi
n
p ! N(0, 1)

where m and s are determined by the distribution of J. For the two hypotheses, we use the following means

and variances:

l0¼P(Jjr, d), r0¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P(Jjr, d) � (1�P(Jjr, d))

p
l1 ¼P(Jjd), r1¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P(Jjd) � (1�P(Jjd))

p

Note that P(Jjd) is given by Equation 3, and that P(Jjr,d) is given by Equation 5. The use of P(Jjr,d) for

the null hypothesis is justified because this case is equivalent to an infinitely distant disease locus. Each

hypothesis yields a different distribution of the markers hence a different standardization, and in turn, a
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corresponding probability for the sum of observations. We denote the standardized sums of Sn according to

hypotheses H0 and H1 by SH0
n and SH1

n , respectively. The likelihood ratio of the observations under the two

hypothesis can now be approximated as follows

L¼ P(J1, . . . , JnjH1)

P(J1, . . . , JnjH0)
! P(SH1

n )

P(SH0
n )
¼K (8)

The log10 of L is called the LOD score; high LOD scores are indicative of a nearby disease locus.

In the above derivation, we assumed that the n marker observations are independent even though each

affected individual contributes two observations to the sample. The effect of this discrepancy weakens as

the sample size increases.

As a final note consider the case of fully informative markers. Such markers have one allele with

probability 1 in the first ancestral population and the other allele with probability 1 in the second ancestral

population. When using fully informative markers and assuming no errors reading them, the ancestry at

each marker location is known with certainty using a single marker readings. In this case, a non-pooled

MALD locus statistic such as the one described by Patterson et al. (2004), reduces to the ratio between the

probability of ancestry given a nearby disease locus and the a priori probability of ancestry (rather than a

ratio between probabilities of marker data). This ratio exactly equals, in the limit of sufficiently large

samples, to our L statistic under fully informative markers. Consequently, for sample sizes that one

normally deals with in MALD studies (>500 samples), our AAA method retains the same statistical power

as non-pooled MALD but at orders of magnitude less genotyping under this scenario. A comparison of the

power of the two methods is further studied in Section 3 without assuming fully informative markers.

2.3. Multi-marker analysis

We now extend our analysis from a single marker to the case of haplotypes where m bi-allelic markers

are sampled. First, we derive the probability P(Jjd) of an individual to carry haplotype J 2 f0, . . . , 2m� 1g
given that the individual is affected (denoted by d). This probability can be written via

P(Jjd)¼
X

p

P(Jjp, d) � P(p) (9)

where p is a partition of the haplotype into PAR blocks. The probability of a partition p(p) is determined by

the independent PAR points that either occurred or did not occur between sampled markers
Qm� 1

i¼ 1 P(Ri),

where the variable Ri 2 f0, 1g denotes whether a PAR point occurred between markers i and iþ 1, and the

probability P(Ri¼ 1) is given by Equation 4.

To compute the remaining term p(Jjp,d) in Equation 9, recall that our admixture model assumes that

markers within a PAR block are independent of markers outside the PAR block given the ancestry of the

block. Hence, given partition p, the probability of haplotype J is given by

P(Jjp, d)¼
Y

b

P(Jbjd) (10)

¼
Y

b

X
Qb

P(JbjQb, d) � P(Qbjd)

where b is a block in partition p, Jb are the markers within block b, and Qb is the ancestry of that block. The

probability of a block’s ancestry given an affected individual is determined by whether or not the disease

locus is within the PAR block in question, hence is

P(Qbjd)¼ P(Q0jd) ld 2 b

pQ otherwise

�

where ld is the tentative disease locus, pQ is the a prior probability of ancestry Q, and P(Q0jd) is given in

Equation 7.

Our model assumes that given the ancestry of a block, the haplotype distribution is independent of the

disease status. Hence, the term P(JbjQb,d) in Equation 10 is equal to the probability P(JbjQb), which can be

computed via samples taken from the ancestral populations. For example, European and West African

individuals phased in the HapMap project (The International HapMap Project., 2005) were used in Section
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3 to construct the ancestral haplotype distribution P(JjQ) for the analysis of African American. This

concludes the derivation of all the terms used in the computation of Equation 9.

Finally, we consider a set of independent haplotype observations J1, J2, . . . Jn sampled from n affected

admixed individuals. We compute the likelihood ratio of the pooled observations, dividing the probability under

the hypothesis of a nearby disease susceptibility locus by the probability under the null hypothesis of no disease:

L¼ P(SnjH1)

P(SnjH0)

where Sn is the sum of observations Ji.

We continue by explicating the computation of the probabilities P(SnjH0) and P(SnjH1). According to the

multivariate central limit theorem, under the assumption that the covariance matrix of J is positive-definite,

the standardized sum of n observations converges towards the standard normal distribution N(0, S) as n grows

S�n¼
P

Ji� n � lffiffiffi
n
p ! N(0, R)

where m and S are determined by the distribution of J assuming an affected admixed individual. For the two

hypotheses, we use the following means and covariance matrices:

l0¼
X

J

J � P(Jjd, ld ¼1)

l1¼
X

J

J � P(Jjd, ld ¼ l)

R0
i, j¼E((Ji� �JiJi)(Jj� �JjJj)

��ld ¼1)

R1
i, j¼E((Ji� �JiJi)(Jj� �JjJj)

��ld)

where Ji indicates the ith component of haplotype J. Under the alternative hypothesis, the distribution

P(Jjd,ld¼ l) equals P(Jjd) given by Equation 9, setting ld to equal the suspected locus l. When assuming no

disease locus, the distribution P(Jjd,ld¼?) equals P(Jjd) from Equation 9 under the assumption ld¼?.

We denote the standardized sums of Sn according to hypotheses H0 and H1 by SH0
n and SH1

n , respectively.

The likelihood ratio under the two hypothesis can now be approximated as follows

L¼ P(SnjH1)

P(SnjH0)
! P(SH1

n )

P(SH0
n )
¼K (11)

The AAA method is defined to be the process of computing the LOD score log10 L via Equation 11 at

examined locations along the genome, declaring a region that shows a LOD above 3.3 as a suspect area that

may contain a disease locus. Subsequently, significant peaks serve as candidates for fine-mapping. Section

3 details the process of selecting the LOD threshold.

2.4. Pooling strategies

In the case of DNA pooling, two parameters affect the number of panels used, namely the pool size k and

the number of pool repetitions l. It was shown that these two parameters can increase the accuracy of allele

frequency estimation in the pooled sample which affects the method’s statistical power (Sham et al., 2002).

Based on previous studies, when using a high-throughput platform for genotyping, pooling is recommended

to be applied in quadruplets (l¼ 4). An empirical study of pooling examined the efficiency of this approach

in association studies, using pools of k¼ 250 individuals (Steer et al., 2006). We report our results with

l¼ 4 and k¼ 200.

2.5. Leave-one-out filter

The leave-one-out (LOO) approach is a common filtering method that can be used in this context to

discard false-positive signals originating from markers with erroneous frequencies. One potential source for

bias is the inaccurate estimation of the allele frequencies in the ancestral populations. Biased genotyping

errors can also result in false signals. Both error sources are assumed to occur independently between the

markers and with low probability. When applying the AAA method, the robustness of a high LOD signal is
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examined via LOO by repeatedly removing markers and evaluating the effect on the LOD; the minimal

LOD is reported, conferring with a conservative approach. A significant signal that persists after the

removal of the marker with the highest contribution to the LOD is less likely to be false. LOO is especially

effective in admixture mapping because suspected regions are usually supported by multiple SNP markers,

retaining the method’s power throughout the filterring phase as opposed to association studies, which often

pinpoints a small suspected region with a single SNP marker.

3. RESULTS

In this section, we evaluate the performance of AAA through simulations, showing that the method has

high statistical power and can detect loci of disease genes with even modest ethnicity relative risk. We

investigate our statistics in the absence of a disease, bounding the false-positive rate to 5% genome-wide.

We examine the effect of deviation from model assumptions, showing that for many realistic disease

models (ERR> 1.4) the method is robust to the inaccuracies expected in real data, and for milder ERR, the

power can be retained through additional samples. We compare our AAA method to non-pooled MALD,

demonstrating significant reduction in panel assays due to pooling at the cost of an increase in sample size.

Finally, we validate our method by replicating the result of a prostate cancer risk locus using real data.

To evaluate the performance of our proposed method, we simulated data following the characteristics of

recent MALD studies. We examined a range of disease models, including a mild value of ERR¼ 1.3

(corresponding to end-stage kidney diseases) which produces signals that are harder to detect in comparison

to diseases with higher ERR values such as hypertension (ERR 1.6) (Smith and O’Brien, 2005). The

population of African Americans was simulated using the haplotypes of 60 unrelated European and 60

unrelated West African individuals phased in the HapMap project (The International HapMap Project, 2005).

The simulation assumed a hybrid-isolated admixture model with 0.2 European contribution, 0.8 African

contribution, and 8 generations of admixture. The simulated individuals were sampled according to a

published panel of 1955 ancestry informative SNP markers (Bercovici et al., 2008), of which approximately

150 SNPs are on chromosome 1.

Figure 2 illustrates the output of the AAA method, using pools of 500, 1000, 1500, and 2000 affected

individuals. The disease susceptibility locus was set to 50cM, and the simulated disease ERR was 1.3. A

three-marker sliding window was used to examine chromosome 1. One can clearly note that the evident

peak, co-located with the disease locus, becomes significantly differentiated from distant locations with

every increase in sample size.

We evaluated the distribution of our LOD statistic in the absence of a disease by performing simulations

of pools of 500, 1000 and 2000 admixed controls, analyzing the sample using a window of two, three, and

four markers at 1cM steps. We assume an ERR between 1.3 and 1.8 using a multiplicative increase risk

model (Equation 1) with a higher prevalence in Africans. Each configuration was repeated 2500 times. The

results illustrate that the gap between random and significant signals increases markedly with both the

sample size and the window size (for more details, see Table 2 in the Appendix). The 95th percentile was

approximately LOD¼ 3.3 when a pool of 1000 individuals was analyzed using a window of two to four

markers over the entire genome, assuming an ERR of 1.3. This means that by defining the significance

threshold to be a LOD > 3.3, we consequently confer a less than 5% type I error under the unfavorable

condition of a hard to detect disease. Our recommended threshold of LOD > 3.3 is applicable for a wide

range of parameters, as seen in Table 2 of the Appendix, but can be relaxed depending on the admixture

model and sample size, as can be determined through appropriate simulations.

To establish the statistical power of AAA we simulated a range of models with ERR values of 1.2–1.8.

For each disease model, we evaluated the performance for a single pool of 500, 750, 1000, 1500, and 2000

cases. In each simulation, a uniformly random locus along chromosome 1 was chosen as the disease locus.

Each configuration, consisting of a specific sample size and an ethnicity relative risk, was repeated 2500

times. Figure 3 summarizes the results of applying AAA using a window of four markers. A successful

detection was defined as a peak with LOD > 3.3 within 5cM of the actual disease locus. The results indicate

high statistical power (over 80%) under disease models that are considered difficult to detect (e.g., ERR of

1.3) when a pool of 1500 affected individual is used. We further found that 500 cases suffice to detect a

disease of ERR � 1.6 with a power of approximately 80%, and 1000 cases yield a power of over 83% in the

analysis of a disease with ERR � 1.4.
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To evaluate the robustness of AAA to deviation from model assumptions, we examined the performance

under inaccuracies in the admixture parameters. Namely, the inaccurate estimate l of the number of gen-

erations since first admixture, and the inaccurate estimate of the ancestral distribution P(Q). Using a simulated

population with African American admixture characteristics we conclude that the statistical power is in-

sensitive (less than 1% decrease in power) to an inaccuracy of up to 5% in l. Error in the estimate of P(Q) has

a greater effect on power. In particular, a 5% overestimation of the contribution of the ancestry with the

higher risk yields a 4.8% drop in power for a study with 2000 cases and ERR � 1.5, and a 1.8% drop for a

study with 1000 cases and ERR 1.8. When only 1000 cases are used to study a disease with a milder ERR of

1.5, the power drops significantly from 95% to 72%. The inaccuracies in the estimation of these admixture

parameters are expected to be lower than 5% in the case of African Americans (Patterson et al., 2004).

To investigate the extent of genotyping reduction due to pooling we examined the number of SNP assays

needed in order to achieve 70% power using our AAA method versus MALD. The MALD method

FIG. 2. LOD score along chro-

mosome 1 showing a peak co-

located with disease locus at 50 cM.

The significant signal is enhanced

with the increase of sample size

while nearby LOD scores drop. The

simulated disease ERR (1.3) is

comparable to end-stage kidney

disease. Chromosome 1 was sam-

pled using 147 ancestry informative

markers.

FIG. 3. Statistical power of 4-

marker window analysis under dif-

ferent disease models and sample

sizes.
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performance was evaluated under the optimal condition where the ancestries are perfectly inferred by a

fully informative single marker (see Section 2). The performance of AAA was examined over 2500

uniformly chosen locations along chromosome 1, using a window of four markers. In the case of AAA, we

report the results under the configuration of k¼ 200 and l¼ 4, which resembles the choice of Sham et al.

(2002) and Steer et al. (2006). The results are shown in Table 1. For ERR¼ 1.3, MALD requires a sample

of 700 affected individuals, with one assay per individual. For the same disease model, AAA uses 28

assays, which suggests a 96% reduction in genotyping. The disadvantage of AAA is the need to collect

additional affected individuals. However, for less than doubling the number of individuals, a 25-fold

reduction in the number of assays is achieved. The performance of AAA was evaluated using a real panel

for admixture mapping. When considering only perfect markers, AAA performance improves even when a

single marker window analysis is applied, reducing the number of cases from 1300 to 1200, and the number

of assays from 28 to 24. Similar results are obtained for ERR¼ 1.4.

To evaluate the performance of AAA on real data, we examined a sample of 1646 African Americans

with prostate cancer that were genotyped using 1985 ancestry informative SNPs. This sample led to the

confirmation of prostate cancer risk locus in African American men through admixture mapping (Freedman

et al., 2006). We simulated a pool using 600 cases that were genotyped with the same 1276 markers. The

allele frequencies in the ancestral populations were estimated using a sample of 343 Europeans and 183

Africans. An ERR of 1.65 was used for the analysis based on Smith and O’Brien (2005). A European

genetic contribution of 0.215 was estimated using a maximum likelihood approach on the pooled sample of

affected admixed individuals.

Applying AAA using a window of four markers results in a significant signal near a known risk locus (for

more details, see Fig. 4 in the Appendix). The peak on chromosome 8 (LOD 7.2) is less than 5Mb from the

susceptibility locus reported by Freedman et al. (2006). Applying the AAA method genome-wide yielded

two additional less significant signals on chromosomes 5 and 9 (LOD 3.7–3.8). To evaluate the robustness

of the three significant signals, we applied AAA with four-marker and LOO filterring. The analysis shows

that only the known locus on chromosome 8 persist, with a significant LOD of 5.88, while the other two

peaks at chromosomes 5 and 9 drop to 0.2 and 1.46, respectively. We attribute the two additional signals to

biased markers.

4. CONCLUSION

Pool-based methods rely on estimates of the allele frequencies in the pooled sample. It is known that

pool-based association analysis is sensitive to errors in these estimates. Previous studies evaluated an error

in the estimation of allele frequency difference between pools of less than 1.4% in 10K SNP arrays (Kirov

et al., 2006). We now discuss the effects of these errors on AAA.

The model we used to simulate allele frequencies assumed independent normally distributed errors with

zero mean. Three error levels were tested, adjusting the variance of the error so as to reflect a 95th percentile

of 1%, 3%, and 5% error in observed allele frequency. We performed simulations using pools of 500, 1000,

and 2000 admixed controls, analyzing a window of 4 markers while using LOO filtering at 1cM steps, and

assuming an ERR of 1.3–1.8. Each configuration was repeated 2500 times. The results are that the selected

threshold of LOD¼ 3.3 is still valid for up to 5% error in allele frequencies for the case of ERR of 1.3–1.5

and 500–1000 affected individuals. These results further suggest that the analysis of the prostate cancer

Table 1. Number of SNP Assays Needed to Achieve a Power of 70% Using MALD and AAA

Cases Assays

ERR MALD AAA MALD AAA

1.3 700 1300 700 28

1.4 470 820 470 20

The AAA method yields over 25-fold decrease in the number of SNP assays when using pool size k¼ 200 and number of replicates

per pool l¼ 4.

ERR, ethnicity relative risk; MALD, mapping by admixture linkage disequilibrium; AA, admixture aberration analysis.
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sample is robust to 5% allele frequency estimation error. Error in the estimation of allele frequencies has a

greater impact on the false-positives rate in the case of a disease with a higher ERR or a larger sample,

increasing the needed significance threshold defined by the 95th percentile. One should adjust the signif-

icance threshold according to the expected allele frequency error via appropriate simulation.

We also repeated the experiment with cases, evaluating the impact of allele frequency estimation errors

on the statistical power of AAA. The power of analyzing a disease with ERR of 1.5 using 1000 cases

decreases from 95% to 82%. The tested error levels had a smaller effect on the analysis of a larger sample

or a disease with a higher ERR value, still retaining a power of over 90%. In the analysis of a smaller

sample size or a disease with a lower ERR, which achieved a power between 50% and 60% under accurate

allele frequency estimation, the power decreased to 33–38% once such errors were introduced. However, in

most of these settings, our simulated experiments on pooled controls suggest that a less stringent LOD

threshold can be used without sacrificing the low level of false-positives.

The AAA method has an advantage over pooled association studies with respect to allele frequency

estimation errors because (1) the aberration around the disease locus is supported by multiple markers,

yielding a robust signal, (2) only a small fraction of SNP markers are required for the analysis, enabling the

use of higher accuracy genotyping platforms, and (3) the ancestry informative markers are biased towards a

high minor allele frequency in the admixed population, which increases the expected accuracy (Wilkening

et al., 2007). The common enhancements applied in pool-based association studies of repeated measures

and the subdivision of samples into pools should also increase the robustness of our method considerably.

Another source of error lies in the inaccurate estimation of allele frequencies of the ancestral populations

which may lead to an increase in the number of false-positive signals. Indeed, initial experiments indicate

that errors in the ancestral allele distribution increase the false-positive signals as these mimic the effect of

a true risk allele. Such results may explain few of the additional suspected regions in the prostate cancer

sample that were detected prior to applying LOO.

Our analysis assumes knowledge of the admixture coefficient P(Q), and the number of generations since

the first admixture l. While reasonable estimates of these parameters exists for some admixed populations,

such as the African American and the Latino populations, it is recommended to tune the l and P(Q)

estimates using the sampled cases. We evaluated the genetic contribution of Europeans by applying a

maximum likelihood approach on our prostate cancer cases pool, computing P(Q¼Europe)¼ 0.215.

One of the properties of admixture mapping is that it can be applied on cases only, a property which

holds for AAA as well. Nevertheless, similar to the use of control samples in MALD, healthy admixed

individuals can increase the statistical power and decrease the rate of false-positives by providing a more

accurate estimation of the allele frequencies in the ancestral population P(JjQ) as well as a more accurate

estimation of the admixture parameters. Admixed controls pooled in several groups, each of similar

admixture coefficient, can be used to adjust the estimates of ancestral allele frequencies using a maximum

likelihood approach. In particular, measuring a marker’s frequency in two African American control groups

with a known and different admixture coefficient allows the estimation of the marker’s frequencies in the

ancestral populations via Equation 5.

The AAA method presented in Section 2 is developed for the case of an admixed population that was

formed by two ancestral populations. Supporting admixed populations with more than two ancestral

populations, as is the case with the Latino admixed population who are descendants of Native Americans,

Europeans, and Africans, can be achieved through an adjustment of Equation 7. Another approach is to

model all low risk populations as one ancestral population and the high risk population as the second

ancestral population, applying the method as is.

Our multi-marker AAA method takes into account knowledge of linkage-disequilibrium evident in the

ancestral population. Such inherent and complete incorporation of LD in the analysis further increases the

method’s statistical power, whereas other MALD methods do not fully benefit from this information,

ranging from partial to no support of background LD. In addition, the analysis we developed is applied on a

window of markers, while common MALD statistics employ an analysis of a single locus. Interestingly, the

development steps presented in Section 2 imply that non-pooled MALD methods can also benefit from a

multi-marker approach by deriving a statistic that evaluates aberration of inferred ancestries in a region,

examining a range of marker locations rather than a single marker location at a time.

The goal of this work has been to alleviate the considerable cost of mapping. As the results indicate, a

high power of 70% can be achieved for a disease with ethnicity prevalence differences comparable with

end-stage kidney disease by pooling 1300 affected individuals, yielding a 25-fold reduction in genotyping
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in comparison to previous non-pooled MALD methods. We showed that AAA can be used by gene

mapping groups as an economical, practical and powerful approach for the initial localization of regions

containing disease genes.

5. APPENDIX
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Table 2. 95th

Percentile of LOD Scores Using Pools of 500, 1000, and 2000 Simulated Controls

Analyzed Using a Window of 2, 3, and 4 Markers Under the False Assumption

of ERR between 1.3 and 1.8

Two-markers window Three-markers window Four-markers window

Sample size 1.3 1.5 1.8 1.3 1.5 1.8 1.3 1.5 1.8

500 2.8 3.28 3.12 2.83 3.28 2.99 2.84 3.26 2.72

1000 3.29 3.14 1.72 3.3 2.89 0.78 3.28 2.75 0.26

2000 3.28 1.56 �1.78 3.06 0.65 �4.4 2.93 0.05 �6.39

All tested configurations exhibit a score lower than 3.3 in the 95th percentile. The simulations demonstrate that in most cases an

increase in either sample size or in the size of the sliding window results in a reduction of the threshold.

FIG. 4. Analysis of 600 prostate cancer cases using AAA and a four-markers window. (a) The significant peak of 7.2

LOD is evident in close proximity to a validated prostate cancer risk locus at 129 Mb (marked by a triangle) that was

previously discovered through a linkage scan by Amundadottir et al. (2006) and later reported by Freedman et al.

(2006) using admixture mapping. Two additional significant signals are evident on chromosome 5 and 9. (b) Only the

validated locus passes the LOO filter with a significant LOD of 5.88.
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