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Abstract to belong to the graphical model. This direction was 
emphasized, for example, by Pearl (1988) and Geiger 

We formulate necessary and sufficient conditions for and Pearl (1993). Lauritzen (1996, Chapter 3) com- 
an arbitrary discrete probability distribution to fac- pared these approaches and herein we extend his re- 
tor according to an undirected graphical model, or sults. 
a log-linear model, or other more general exponen- 
tial models. This result generalizes the well known 
Hammersley-Clifford Theorem. 

1 Introduction 

In this paper we describe a class of exponential mod- 
els for discrete distributions. These models include 
two important classes of models: log-linear models and 
undirected graphical models. We define these models 
in terms of a polynomial mapping from a set of param- 
eters to distributions and analyze the algebraic prop- 
erties of these models. Our analysis provides necessary 
and sufficient conditions for a discrete probability dis- 
tribution to factor according to an  undirected graph- 
ical model, or a log-linear model, or a more general 
exponential model. In particular, these conditions are 
shown to include constraints on some cross product 
ratzos, in addition t o  independence statements. Our 
results generalize the Hammersley-Clifford Theorem 
which characterizes the factorization of strictly pos- 
itive distributions with respect t o  undirected graphs 
(e.g., Besag 1974; Lauritzen 1996). 

Graphical models have been defined and studied in 
the statistical literature in two distinct but related ap- 
proaches. The first approach is to define undirected 
graphical models by specifying a graph according to 
which a probability distribution must factor in order 
to belong t o  the undirected graphical model. This 
direction was emphasized, for example, by Darroch, 
Lauritzen, and Speed (1980). The second approach 
is to define graphical models by specifying, through a 
graph, a set of conditional independence statements 
which a probability distribution must satisfy in order 

This work was partially done while the author visited 
Microsoft Research. 

The paper is organized as follows. In Section 2, we 
define a class of exponential models and describe log- 
linear and undirected graphical models. In Section 3,  
we provide necessary and sufficient conditions for a 
discrete probability distribution to factor according to 
such an exponential model or to be the limit of distri- 
butions that factor. In Section 4,  we focus our atten- 
tion on undirected graphical models illustrating how 
the results of Section 3 generalize the Hammersley- 
Clifford Theorem for undirected graphical models. Fi- 
nally, in Section 5 we present an open problem regard- 
ing undirected graphical models and provide some ini- 
tial results towards its solution. 

2 Technical Background 

Our objects of study are certain statistical modelsfor a 
finite state space X.  The class of models to be consid- 
ered consists of discrete exponential families (models) 
of the form 

where x E X, Z(8) is a normalizing constant, (.;) 
denotes an inner product and sufficient statistics T : 
X c+ N ~ \ { o )  where N denotes the set of non-negative 
integers and 0 is a vector of d zeroes. 

We find it convenient to reformulate these models as 
follows. We identify X with the set {1 ,2 , .  . . , m ) .  
A probability distribution over X is then a vector 
P = ( p l ,  . . . , p m )  i n R T ; d o ~ u c h t h a t p 1 + . . . + p m = 1  . 
The support of an  m-drmensional vector v is the set of 
indices supp(v) = { i  E {1, . . . , m )  : vi # 0) and thus 
the support of a probability distribution P is the set 
of indices supp(P)  = { i  E ( 1 , .  . . , m )  : pi > 0) .  Let 
A = (aij) be a non-negative integer d x  m-matrix. This 
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matrix defines the mapping $ A  : ~ d > ~  ct RY0 which 
takes non-negative real d-vectors to  ion-negative real 
m-vectors via 

where On = 0 for all a.  We say that a probability 
distribution P factors according to the model A (de- 
scribed by Equation 2) if and only if P is in the image 
of the mapping 4 ~ .  
The class of models in Equation 1 and Equation 2 are 
identical. Note that each column of A corresponds to  a 
different state z of X.  Thus, a model defined by Equa- 
tion l with sufficient statistics T ( z )  is equivalent to  a 
model defined by Equation 2 with matrix A if and only 
if the columns a j  of A coincide with the corresponding 
T(z) .  For a particular distribution from a model of 
the form Equation 1 with sufficient statistics T(z )  and 
parameters 8, the corresponding parameters ti for the 
corresponding model in Equation 2 are t i  = exp(6i) 
where exp(-co) = 0. 

This class of models includes log-linear and undirected 
graphical models used in the analysis of multiway 
contingency tables. When analyzing multiway con- 
tingency tables, the state space is a product space 
X = n x E x  Ix, where X = { X I , .  . . , X,) is a set 
of (random) variables and Ix, is the set of states for 
variable Xj.  A log-linear model is defined by a col- 
lection B = {GI, .  . . , E m )  of subsets of X. We refer 
to  the Qi as the generators of the log-linear model. A 
log-linear model for a set of generators B is defined as 

where z E X is an instantiation of the variables in X 
and $p,(z) is a potential function that depends on z 
only through the values of the variables in Bi. This 
log-linear model can be represented in the following 
way by a matrix A as in Equation 2. The columns 

- of A are indexed by X = nxjEx Ix,. The rows of A 
are indexed by pairs consisting of a generator Gi and 
an element of nxjEg, I x j .  All entries of A are either 
zero or one. The entry is one if and only if the second 
entry in the row label is equal to image of the column 
label under the projection from X to nxjEp, Ix,. 

A probability distribution for three variables P = 

is represented by the matrix 

PO00 PO01 POID PO,, PI00 PI01 PI10 Plll 
t , l * { l , z ) ( O O )  1  1  0  0  0  0  0  0  

tz E *{1 ,2 ) (01 )  0  0  1  1  0  0  0  0  

( ~ 0 0 0 ,  pool,polo,~oll,~loo>plol, ~ 1 1 0 ,  Pl l l )  factors in 
the no-three-way interaction model if and only if it lies 
in the image of the associated mapping $ A  : Ri20 ~f - 
Rko defined by 

13 l *{, ,z)( lO) 
t * { ) ( l l )  

t * { , ) ( O O )  
tg 1 *{z,3)(Ol)  
t, 5 *{z,3)(10)  
t 8 E * { 2 , 3 ) ( i i )  

t { } ( O O )  
t lOf*{ , , , ) (O1)  

t ~ , l * { ~ , ~ ) ( l O )  

An important subclass of log-linear models are the 
undirected graphical models. Such a model is spec- 
ified by an undirected graph G with vertex set X and 
edge set E. The undirected graphical model for the 
graph G is the log-linear model in which the genera- 
tors are the cliques (maximally connected subgra~hs)  
of the undirected graph G. The matrix A of Equa- 
tion 2 is a function of the graph G and we write it as 
A(G). Example 1 shows a log-linear model that is not 
graphical. 

0  0  0  0  1  1 0  0  
0  0  0  0  0  0  1  1  

1  0  0  0  1  0  0  0  
0  1  0  0  0  I  0 0  
0  0  1  0  0  0  1  0  
0  0  0  1  0  0  0  1  
I  0  1 0 0 0  0  0 

0  1  0  1  0  0  0  0  
0  0  0  0  1  0  1  0  

Example 2 The three-variable-chain graphical model 
with graph G having two edges X I  - Xz and X2 - X3 
has generators B = {{XI, Xz),  1x2, X3)). When each 
Xi is a binary variable, the matriz A(G) is identical 
to the first eight rows of the matrix of Example 1. 

t  E * 1 , } ( 1 1 )  0  0  0  0  0  1 0 1  

We conclude this section by relating certain polynomi- 
als equations to  conditional independence statements. 
Given three discrete variables X ,  Y, Z ,  we define 

where z and z' are states of X and y and y' are states 
of Y and z is a state of Z. We call these polynomi- 
als cross-product differences (CPDs). Note that the 
cross-product differences are essentially the same as 
the cross-product ratios 

cpr(X = {z, z l ) , Y  = {y, y') I Z = z) = (4) 
P ( z ,  Y,  z )P(z l ,  Y', 2) 
P(.', ?I, .)P(., Y', 2) ' 

See e.g. (Lauritzen 1996, pp. 37). The notions of cpd - .  - - 

Example 1 The no-three-way interaction model for and cpr are identical in the sense that 
X I ,  X2,  X3, where each Xi is a binary variable, has 
generators B = {{XI, X2}, {X2, X3), {XI ,  X3)}, and cpd(X = { z , z l ) , Y  = {y, yl}IZ= z) = 0 
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if and only if where If denotes either the positive real numbers R > o  
or the non-negative real numbers R > o .  Hence X>O is 

cpr(X = { x , x i ) , Y  = {y,y')IZ = z) = 1, the common zero set in RYo of all polynomials in I ,  

provided the denominators in (4) are nonzero. Some- and X>O is the common zero set in R;", of all polyno- 

times i t  is more convenient to use cross-product ratios mials in I .  Testing x E xK is equivalent t o  checking 

when interpreting higher degree binomials associated that q(x) = 0 for all x E Ifm, for all q E I .  Hilbert's 

with an undirected graphical model. When X and Y Basis Theorem states that every ideal in R[x] is fi- 
nally generated, namely, every ideal I in R[x] con- each represent a single binary variable, we shorten the 

notation in (4) t o  tains a finite subset i g l ,  . . . , g,), called an ideal ba- 
sis of I ,  such that everv Q E I can be written as 

Let X I , .  . . , X, denote discrete variables, where Ix, 
is the set of states of the variable X j .  We fix the 
polynomial ring R[X]  whose indeterminates p,,,, ...,, 
are indexed by the joint states of X = Ix, x Ix, x 
. . . x Ix, . Conditional independence statements have 
the form 

X is independent of Y given Z, (6) 

where X ,  Y and Z are pairwise disjoint subsets of 
{ X I , .  . . , X,). The statement (6) translates into a 
large set of CPDs of the form (3) .  Namely, we take 
cpd(X = { x , x i ) , Y  = {y,yi)  IZ = z ) ,  where x ,x ' runs  
over distinct states in flxtEx I x , ,  where y, y' runs 
over distinct states in fl,.,, Ix , ,  and where z runs --, - -  - 
over nxkEz Ix,. The independence statement (6) is 
said to be saturated if X U Y U Z = 1x1,. . . , X,). 
The CPDs associated with a saturated independence 
fact are all square-free quadratic binomial equations, 
namely, polynomials having exactly two monomials 
each consisting of two distinct terms (i.e., t l t z  -t3t4 = 
0). 

3 Distributions that  Factor 

In this section, we provide a characterization of those 
distributions that factor according t o  a model A and of 
those distributions that are the limit of distributions 
that factor. These distributions lie in irnage(4A) where 
qhA is the mapping defined by Equation 2. 

We use basic notions of ideals, varieties, and ideal 
bases from computational algebraic geometry (e.g., 
Cox, Little, and O'Shea, 1997). We work in the ring 
R[x] = R [ x l ,  . . . , x,] of polynomials with real coeffi- 
cients in the indeterminates X I ,  . . . , x,. An ideal I is 
a subset of R[x] which satisfies three properties: (a) 
the zero polynomial is in I ,  (b) if ql ,  qz E I ,  then 
ql + qz E I ,  and (c) if b E R[x], and q E I, then 
b . q E I .  With every ideal I in R[x] we associate two 
varieties, 

xK = {x  6 ICm : q(x) = 0, for every q E I } 

- 
q(x) = Cy=l bi(x)gi(x) where bi are polynomials in 
R[x].  Consequently, a point x in Ifm lies in xK if and 
only if g l (x)  = . . . = g,(x) = 0. The ideal generated 
by a set of polynomials g = {gl,  . . . , g,} is denoted by 
(gl,  . . . ,g,). An ideal I is prime if whenever q . p E I ,  
then either q E I or q E I .  We will focus on toric 
ideals which are prime ideals that have an ideal basis 
consisting of binomials of arbitrary degree. 

Let a j  = ( a l j , .  . . , adj) denote the j-th column vec- 
tor of the d x m-matrix A. Note that supp(aj) C 
{ 1 2  d}. A subset F of 11 , .  . . ,  m) is said to 
be nice if, for every j E (1 , .  . . , m ) \ F ,  the sup- 
port supp(aj) of the vector a j  is not contained in 

UlEF S U P P ( ~ ~ ) .  

Lemma 1 A probability distribution P factors accord- 
ing to A only if the support of P is nice. 

Proof: Let P be a probability distribution which fac- 
tors according to A ,  that is, P E irnage(4A). We must 
show that F = supp(P)  is nice. Let ( t l , .  . . , t d )  be 
any preimage of P under 4 ~ .  Then 

d 

p j  = IItP'J > 0 for j E F 

and 

Suppose that F is not nice. Then supp(ak) is con- 
tained in ULEFsupp(al)  for some k @ F .  Conse- 
quently for every i E supp(ak),  there exists an f E F 
such that aif > 0. Hence, due to (7), ti > 0 for every 
i E supp(ak). Thus pk = fliEsupp(ak, t:'* > 0 contrary 
to our assumption that k @ F. // 

The non-negative toric variety xi0 is the set of all 
vectors ( x l ,  . . . , x,) E RYo which satisfy - 

whenever u 1 , .  . . , u r n ,  ~ 1 , .  . . , u rn  are non-negative inte- 
gers and satisfy the linear relations 
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for i = 1, . . . , d .  Note that (10) is equivalent in vector 
notation to 

In this definition we adopt the convention 0' = 1. 
Since the exponents u l ,  . . . , urn, v l  , . . . , v ,  used in (9) 

>a were assumed to be non-negative integers, the set X,- 
is indeed an algebraic variety, that is, the zero set of a 
system of polynomial equations. 

Lemma 2 A probability distribution P factors accord- 
ing to A only if P lies in the non-negative toric variety 
v > O  

Proof: We need to show that the image of $A is a sub- 
set of xio. Indeed, suppose that x = ( X I ,  . . . , x,) € 
image($a). There exist non-negative reals t 1 ,  . . . , td 

for i = 1 , .  . . ,  m. This such that  xi = t?"t;'' . , . tad '  
implies that (9) holds whenever (10) holds because 

whenever (10) holds. Hence x lies in x i o .  // 

The main contribution of this section is the formula- 
tion of necessary and sufficient conditions for a prob- 
ability distribution t o  factor according to a matrix A. 
This result, when A is appropriately selected, applies 
to undirected graphical models, log-linear models, and 
other statistical models. 

Theorem 3 A probability distribution P factors ac- 
cording to A if and only if P lies in the non-negative 
toric variety xi0 and the support of P is  nice. 

- -- 
Proof Outline: The only-if direction has been proved 
in Lemmas 1 and 2. For the if-direction, fix any vector 
P E xi0 whose support F = supp(P)  is nice. We 
claim that  P lies in the image of $a, or equivalently 
that the system of equations (7, 8) has a non-negative 
real solution vector ( t l ,  . . . , I d ) .  This claim, along with 
other related results are proved in an extended version 
of this paper (Geiger, Meek, and Sturmfels, 2002). 

i 
We now turn our discussion to the set of distributions 
that are the limit of distributions that factor. In gen- 
eral, image($a) is not a closed subset of the orthant 
RTo. This is important because if there are distribu- 
tions that  d o  not factor according t o  a model but are 
the limit of distributions that do  factor, then there are 
da ta  sets for which the MLE does not exist. 
The  next theorem states that the set of probability 
distributions which lie in the toric variety xio coin- 
cide with those in the closure of the image of $ a p t h a t  
is, xi0 = c lo~ure ( image($~) ) .  This result means that 

P E xi0 if and only if P factors according to A,  or 
P is the limit of  roba ability distributions which fac- 
tor according t o  A. The set of distributions in x i o ,  
when A consists only of zeroes and ones, is called the 
extended log-linear model by Lauritzen (1996). Thus 
Theorem 4 below amounts to an algebraic description 
of extended exponential models and, thus, extended 
log-linear models and extended undirected graphical 
models. 

Theorem 4 A probability distribution P factors ac- 
cording to A or  is the limit of probability distributions 
that factor according to A if and only if P lies in the 

> 0 non-negative toric variety Xz . 

Theorems 3 and 4 together characterize probability 
distributions in xi0 \ irnage(4a), namely, distribu- 
tions that are the limit of factorizable distributions 
but do  not factor themselves. These distributions are 
those that lie in xio but have a support which is not 
nice. 

The  task of checking that a point (e.g. a distribution) 
is in the zero set of all of the polynomials in an ideal, 
as required by Theorem 3 and Theorem 4, appears ex- 
tremely hard, but there are two fundamental results 
which make it tractable. The first is Hilbert's Basis 
Theorem which states that every ideal in R[x] is finally 
generated. The second is Buchberger's algorithm that 
produces a distinguished ideal basis, called Grobner 
basis, for any given ideal I .  Variants of this algorithm 
have been implemented in virtually every symbolic al- 
gebra package available, albeit the implementations in 
MAPLE and MATHEMATICA are less efficient than those 
in some freely-available programs such as SINGULAR 

or COCOA. With this background, we now rephrase 
Theorem 3 and Theorem 4 as follows. 

Theorem 5 A probability distribution P factors ac- 
cording to an exponential model A if and only if the 
support of P is nice and all polynomials in an ideal 
basis of the toric ideal IA vanish at P .  

Theorem 6 A probability distribution P is the limit 
of probability distributions that factor according to A 
if and only if all polynomials in an ideal basis of the 
toric ideal IA vanish at P. 

We call these the Factorization Theorem and the Limit 
Factorization Theorem respectively. Thus, if we know 
a small ideal basis for la, which can be generated by a 
symbolic algebra program such as S I N G U L A R ,  then we 
can efficiently test whet,her or not a distribution P l i e s  
in xi0 by checking that P satisfies these polynomials. 

I t  is important to note that one can often identify 
smaller sets than an  ideal basis for IA for use in The- 
orems 5 and 6 when testing a distribution. In other 
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words, we can identify a smaller set B of polynomials 
such that P E xio if and only if P is the common 
zero set of the polynomial in B. 

We will see that for undirected graphical models, the 
Hammersley-Clifford theorem, to be discussed in the 
next section, defines a small subset of binomials which 
do not generate the ideal but their zero set does 
define XA>PG,. Nevertheless, identifying an ideal basis 
for IA, rat'her than a subset whose zero set defines the 
variety xi0 allows one to identify a complete set of 
moves for sampling from the conditional distribution 
of data given sufficient statistics for an exponential 
model, as described by Diaconis and Sturmfels (1998). 
This result complements alternative sampling meth- 
ods (Besag and Clifford, 1989). We note that for di- 
rected graphical models, which are not discussed in 
this paper, direct sampling methods are well known 
(e.g., Lauritzen, 1996; Patefield, 1981). 

4 The Hammersley-Clifford Theorem 

The Hammersley-Clifford Theorem relates the factor- 
ization of a strictly positive distribution P according 
to an undirected graphical model to a set of indepen- 
dence statements that must hold in P. In this section 
we describe the Hammersley-Clifford Theorem in the 
language of ideals and varieties and compare it to our 
Factorization theorem. 

Let G be an undirected graphical model with variables 
{XI, . . . , X,) as before. We define Ipairwise(G) to be 
the ideal in R[X] generated by the quadratic binomi- 
als corresponding to all the independence statements 
Xi is independent of X j  given {XI, . . . , X,)\{Xi, Xj} 
where (Xi,Xj)  runs over all non-edges of the graph 
G. Note that this independence statement is sat- 
urated, so the polynomials are in fact binomials. 

> 0 The ideal Ip,i,,i,e(G) defines the varieties Xp,irwise(G) 
and Xi:rwiSe(G). Lauritzen (1996) uses the notation 

> 0 Mp(G) to denote the variety XfiirWise(G) and states 
the following three inclusions, which hold for every 
graph G, and are generally all strict: 

The variety ~ 2 : ~ ~ ~ ( ~ )  corresponds to the ideal 
Iglobal(G) generated by the quadratic binomials corre- 
sponding to all the independence statements (6) where 
Z separates X from Y in the graph G. Probability 
distributions in ~ 2 : ~ ~ ~ ( ~ )  are said to satisfy the global 
Markov property (Lauritzen, 1996). The middle in- 
equality is addressed by Matus and Studeny (1995). 

Example  3 
The four-cycle undirected graphical model for binary 
variables with graph G' having four edges XI - Xz, 
Xz - X3, X3 - X4 and X I  - X4 has generators 
G = {{xl ,Xzl ,  { X Z , X ~ } ~  {X3,X4Ir {X1,X4)}. This 
graph has four maximal cliques, one for each edge. 
The probability distributions P(x1, xz, x3, x4) defined 
by this model have the form 

If all four variables are binary then the ideal 
I p a i r w i s e ( G r )  we just defined equals 

This is a toric ideal in  a polynomial ring in  sixteen 
indeterminates: 

The left four binomials in  (13) represent the statement 
"Xz is independent of X4 given {XI, X3)", and the 
right four binomials in  (13) represent the statement 
"XI is independent of X3 given {Xz, X4)". The vari- 
ety X~i ,wi , e (G)  is the set of all points in K16 which 
are common zeros of these eight binomials. Note that 
XEirwise(G) = xzObal(G) for the four-cycle model and 
therefore, for this model, the right inclusion of Equa- 
tion 12 is an equality. 

In what follows we shall see the crucial differences be- 
tween I< = R > o  and K = R > o .  The following theorem 
is well-known& the statistics literature; see e.g. (Lau- 
ritzen 1996, pp. 36). 

Theorem 7 (Hammersley-Clifford) Let G be an 
undirected graphical model. A strictly positive prob- 
ability distribution P factors according to A(G) if and 
only if P is in  the variety Xi:rwise(G). 

This theorem can be rephrased as follows: 

where i m a g e + ( 4 ~ ( ~ ) )  is the set of strictly positive dis- 
tributions in the image of 4 , 4 ( ~ ) .  

Our Factorization Theorem 5 generalizes the Ham- 
mersley-Clifford Theorem in two respects. First, it 
does not require P to be strictly positive. Second, it 
does not require the matrix A to represent an undi- 
rected graphical model. The main advantage of the 
Hammersley-Clifford Theorem over the Factorization 
Theorem is computational. The set Ipairwise(~) is easy 
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to describe while one must usually resort to a svm- where 
bolic algebra program to produce an ideal basis or a f G f f  = P0100P011lplOOlplOlO - P0101p0110P1000p1011. 
Grobner basis for IA . fgf f  = POOlOPOlOlPlOllPllOo - POOllPOlOOPlOlOPllOl r 

The proof of the Hammersley-Clifford Theorem given f:iR = P0001POllOP1010pl101 - P0010P0101P1001p1110, 
f:;" = p0001p0111p1010p1100 - poOllp0101P1000p11l0, 

in (Lauritzen 1996) actually establishes the following f;Ye = pooooPoollpllolP11lo - pooolpooloplloopllll, 
slightly stronger result: any integer vector in the ker- f;:"" = P O O O O P O ~ ~ ~ P ~ O O ~ P ~ ~ I O  - P O O O I P O ~ ~ O P ~ O O O P ~ ~ ~ ~ ~  
nel of the matrix A(G) is an integer linear combina- fzy"" = ~ o o o o ~ o ~ ~ 1 ~ ~ o ~ ~ ~ 1 1 o o  - ~ o o 1 ~ ~ o ~ o o ~ t o o o ~ ~ ~ ~ 1 ,  

tion of the vectors u - v corresponding to the binomi- fye = ~ o o o o ~ o l 1 o ~ l o 1 l ~ l l o 1  - ~ o o ~ o ~ o 1 o o ~ ~ o o ~ ~ ~ ~ 1 1 .  

als pU - pU arising from the conditional independence (14) 

statements for the non-adjacent pairs (Xi ,  Xj) in G.  
Translating this statement from the additive notation 
into multiplicative notation, we obtain the following: 

Coro l l a ry  8 A binomial p" - p u  lies in the toric ideal 
I A ( ~ )  of an undirected graphical model A(G) if and 
only if some monomial multiple of it, i.e., a binomial 
of the form pU+w -put" , lies in Ipairwise(G). 

This proposition is proved by an explicit machine cal- 
culation, by inputing t o  Algorithm 12.3 of (Sturmfels 
1996) the eight quadratic generators of IPairwise(~,) .  
We did this using the symbolic algebra package called 
COCOA. The  use of Algorithm 12.3 with the eight 
quadratic generators of Ipairwiae(Gt) as input is much 
more efficient than directly computing an ideal basis 
for the toric ideal 

This corollary is important for computational purposes Next we provide an interpretation of the ideal basis of 
because it means that we can use the quadratic bino- the four-cycle given in Proposition 9. The basis pre- 

- = scribed by (14) has a meaningful statistical interpre- 
mials in Ipa,rwise(G) as input when computing the toric tation using cross product ratios, ~ d ~ ~ t i ~ ~  the defi- 
ideal IA(G), as outlined in the explanation of P r o ~ o s i -  nition of cpr in (5), the eight new basis elements (14) 
tion 9 below. can be rewritten as follows: 

5 An open problem 

We now discuss undirected graphical models from the 
perspective of the Factorization Theorem 5. We show 
that there are polynomials which do not correspond 
t o  independence statements that a probability distri- 
bution must satisfy in order to factor according to 
an undirected graphical model. This stands in sharp 
contrast to the Hammersley-Clifford Theorem which 
shows that a strictly-positive probability distribution 

- -- must merely satisfy the pairwise independence state- 
ments in order t o  factor according t o  an undirected 
graphical model. 

We first focus on the four-cycle model. Probability 
distributions which factor according t o  the four-cycle 
model of Example 3 must satisfy not just the eight 
quadratic binomials in (13), which arise from pairwise 
independence statements, but they must satisfy cer- 
tain additional polynomials of degree 4 (namely, quar- - tics) listed in Equation 14. 

P r o p o s i t i o n  9 Consider the four-cycle undirected 
graphical model of Example 3 with graph G'. A proba- 
bility distribution P factors according to the four-cycle 
o r  is the limit of probability distributions that factor 
according to the four-cycle if and only if P satisfies 
the following basis of the ideal consisting of 
I p a i r w i s e ( ~ ' )  along with 

(!diff fdiff fdiff fdift fsame, f;gme, f igme,  fiqame) 
1 2  , 23 , 34 r 14 8 12 

, , 

Note that (14) is obtained from (15) by multiplying 
the equations by the relevant denominators and that 
for (15) t o  be always defined, special care must be 
taken in defining division by zero. 

Proposition 9 provides an ideal basis for the four-cycle 
undirected graphical model (with binary variables), 
however, the problem of explicitly providing a basis 
for an  arbitrary undirected graphical model remains 
open. See (Takken, 1999) for related computations, 
and the work in (Sullivant and Hosten, 2002). 

O p e n  problem: Explicitly specify an ideal basis for 
the toric ideal IA(q where G is an  arbitrary undirected 
graphical model for variables X I , .  . . , X,. 

We examined quite a few examples of undirected 
graphical models and computed their ideal bases. In 
all these examples, we discovered the ideal basis ele- 
ments have the form of ratio of ratio (recursively) of 
CPRs. For example, consider the four cycle X I  -X2 - 
XB - X4 -XI  in which X I  and X z  are binary but Xg 
and X4 have three states {O,l, 2) .  Here the ideal ba- 
sis consists of 36 binomials of degree 2, representing 
independence statements of the form cpr = 1, 252 bi- 
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nomials of degree 4 ,  representing ratios of CPRs of the 
form (cpr/cpr) = 1 (as in (15)), arid 12 binomials of 
degree 6 of the form (cpr/cpr)/(cpr/cpr) = 1,  such as 
the following binomial equation, 

PolozPollopolzlploolPlolzPlozo- 

PololpollzPolzoPloozPloloPlo2l = 0 

which can be written as follows 

cpr(X3 = {O, 2); X4 = {2,1)IX1Xz = 01)/ 

cpr(X3 = {2,1);  X4 = {0,2)IXlXz = 01) 

divided by 

which can also be written as ratio of ratios of CPRs. 
We note that providing an ideal basis even for this "n 
non-interacting pairs" model is an open problem. 

Remark. It has been brought to our attention by the 
reviewers that the work by Ripley and Kelly (1977) 
on heredity subsets and of Barndhoff-Nielsen (1978) 
on weak closures of exponential families are possibly 
related to the results  resented herein. At time of 

cpr(X3 = {O,2); X4 = ( 2 , l ) l X l X ~  = l o ) /  publication, we have not had the chance to firm these 
relationships. 

cpr(X3 = {2,1}; X4 = (0, 2)IX1Xz = 10)) 
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