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Abstract 

Recent improvements on Tarski's procedure 
for quantifier elimination in the first order 
theory of real numbers makes it feasible to 
solve small instances of the following prob- 
lems completely automatically: 1. listing all 
equality and inequality constraints implied 
by a graphical model with hidden variables. 
2. Comparing graphical models with hidden 
variables (i.e., model equivalence, inclusion, 
and overlap). 3. Answering questions about 
the identification of a model or portion of a 
model, and about bounds on quantities de- 
rived from a model. 4. Determining whether 
an independence assertion is implied from 
a given set of independence assertions. We 
discuss the foundations of quantifier elimina- 
tion and demonstrate its application to these 
problems. 

1 Introduction 

A variety of problems from statistics, many related to 
graphical models, can be cast as questions in Tarski's 
first order theory of real numbers and answered using 
procedures for quantifier elimination. We discuss the 
foundation of quantifier elimination and demonstrate 
its application to some statistical problems. Other in- 
teresting statistical problems for which Tarski's the- 
ory is applicable are described in (Fagin, Halpern, and 
Megiddo, 1990). 

Tarski (1951) has posed and solved the following prob- 
lem. Given a sentence in the first order theory of 
real fields where variables represent real numbers, con- 
stants are 0 and 1, function symbols represent the 
standard binary operations of a field {+, -,*), and 
relation symbols represent the standard binary rela- 
tions {=, +, <, 5 ,  >, z) ,  determine whether a sentence 
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is true, and provide a sentence without quantifiers 
which is equivalent to the original sentence. For ex- 
ample, the sentence (Vx)x2 > 0 is true and the for- 
mula (Vx)ax2 + bx + c > 0 is equivalent to the formula 
b2 - 4ac < 0 A a > 0. Tarski's remarkable theorem is 
that such an equivalent quantifier-free formula always 
exists and that there exists an algorithm to construct 
it. This result opened the way to many applications 
including geometrical theorem proving and geometric 
modeling (Caviness and Johnson, 1998). 

Tarski's algorithm, developed in the thirties, is mainly 
of academic interest because its complexity is non- 
elementary (towers of exponentials in the number of 
variables). Collins (1975) provided an alternative pro- 
cedure for quantifier elimination over the real numbers 
based on, what he called, Cylinder Algebraic Decom- 
positions (CAD). Collin's procedure is a major break- 
through because of its clear geometrical interpretation 
and its complexity (doubly exponential in the num- 
ber of variables). Further improvements by Collins 
and Hong (1991), who developed partial CADS, and 
an implementation called QEPCAD, made the theory 
available for testing in numerous application areas. We 
briefly review the foundations of quantifier elimination 
in Section 2 and add more details in the appendiu. 

Graphical models provide interesting statistical prob- 
lems for which no solution has been known, however, 
as we observe, quantifier elimination provides a solu- 
tion, at least in principle, to many of these problems. 
We consider the following classes of problems. 1. list- 
ing all equality and inequality constraints implied by 
a graphical model with hidden vasiables. 2. Com- 
paring graphical models with hidden variables (i.e., 
model equivalence, inclusion, and overlap). 3. An- 
swering questions about the identification of a model 
or portion of a model, and about bounds on quanti- 
ties derived from a model. 4. Determining whether 
an independence assertion is implied from a given set 
of independence assertions. We demonstrate the a p  
plication of quantifier elimination to these problems in 
Section 3. 
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Another type of problems for which quantifier elimina- 
tion is applicable are questions about the topology of 
graphical models. Recently, Geiger, Heckerman, King, 
and Meek (1998,1999) introduced and analyzed a class 
of exponential families which they termed stratified ex- 
ponential families. They classified graphical models as 
linear, curved, and stratified exponential families, ac- 
cording to whether the, parameter space over the ob- 
servable~ is a linear manifold, a smooth manifold, or a 
stratified set, and demonstrated that many graphical 
models with hidden variables are stratified exponential 
families. Cylinder algebraic decomposition can be used 
to construct a stratification of an exponential family. 
Benedetti and Ftisler (1990) provide such a procedure, 
however, it has a non-elementary complexity, which 
makes it impractical even for very simple examples. 
In Section 4 we discuss other topological properties of 
graphical models that one may hope to compute using 
CADS. 

2 Background on Real Geometry and 
Tarski sentences 

We consider a first order language LR consisting of 
constants, variables, and finite-array operation and re- 
lation symbols. The constants are 0 and 1. Variables 
in L denote real numbers. Operations are the usual 
{+, -, *} operations of a field. Constants, variables, 
and their composition by these operations, yield t e n s .  
Relations consist of the binary relations {=, #, <, >, 5 
, 2) which compare two terms. Atomic formulae con- 
sist of True ,  False, t # t', t = t', t < t', t > t ' ,  t < t', 
and t > t' where t and t' are terms. The standard log- 
ical connectives {A, V, -, +, H )  and quantifiers {3,V} 
are used to create formulae from atomic formulae. A 
variable x is bound in a formula 11, if it is in the scope 
of a quantifier 32 or V x ;  Otherwise, it is free in 11,. A 

- -. formula in a first order language that contains no free 
variables is called a sentence. In the language LR, a 
sentence is also called a Tarski sentence. Two Tarski 
sentences 11, and 11,' are equivalent if Q ++ Q' is true. A 
formula containing no quantifiers is quantifier-free. A 
formula $J is true if the sentence obtained by a univer- 
sal quantification of all free variables in Q is true. 

The language LR can be used to describe many ge- 
ometrical, topological, and analytical properties of 
polynomials over the reals. Section 3 discusses several 
examples that relate to graphical models. Here we em- 
ploy examples related to quadratic polynomials. The 
formula 3x(ax2 + bx+c = 0 )  says that every quadratic 
polynomial has a real root. This formula is false. The 
formula 3x(ax2 + bx + c = 0 )  H (b2 - 4ac 2 0) is true. 
In other words, the formula 3x(ax2 + bx + c = 0)  and 
the quantifier-free formula b2 - 4ac > 0 are equivalent. 

Theorem 1 (Tarski) Every Tarski sentence is 
equivalent to a quantifier-free formula. Furthermore, 

given a Tarski sentence 11,, there exists an algorithm 
that wnstrvcts a quantifier-free formula equivalent to 
11 and determines whether 11, is true or not. 

This is a remarkable theorem which highlights an im- 
portant property of the real numbers. The origi- 
nal proof of Tarski contained an algorithm of non- 
elementary complexity. Collins (1975) presented an 
improved algorithm, based on, what he termed, cylin- 
der algebmic decomposition (CAD). Collins' algorithm 
is rooted in a famous geometrical consequence of The- 
orem 1, called the Tarski-Seidenberg Theorem (e.g., 
Mishra, 1993, Section 8.6.3, or, Benedetti and Risler, 
1990), which we now present. 

Define a semi-algebraic set CJ, (Also called a 
Tarski set) to be a subset of Rn of the form 
{ ( X I , .  . . , xn)l$(xl , .  . . , xn)  = True)  where $ is a for- 
mula containing exactly n free variables. The formula 
$ is called the defining formula of C+. Equivalently, 
due to Tarski's theorem, a subset V of Rn is a semi- 
algebmic set if V = Ub, $;, { x  E lRnlPi,j(x) ~ i j  0 )  
were Pij are polynomials in Q [ x l ,  . . . , x,] and ~ i j  is 
one of the comparison relations. 

A map f : X + Y where X C Rn and Y Rm 
are semi-algebraic sets, is called semi-algebraic if the 
graph of f ,  denoted G ( f ) ,  is a semi-algebraic set of 
Rn+m. Note that i f f  is a polynomial map then f is a 
semi-algebraic map because its graph can be described 
by m polynomial equalities: yj - f j ( x )  = 0, where 
l < j < r n .  

Theorem 2 (Tarski-Seidenberg) Let f : X + Y 
be a semi-algebraic map. Then the image f ( X )  Y 
is a semi-algebmic set. 

The proof of this theorem only requires to observe that 
the image f ( X )  is given by the following Tarski set 
{Y E YI ~ x ( ( x , Y )  E G ( f ) ) )  where ( x , Y )  E G ( f )  can 
be described by a Tarski sentence because G ( f )  is as- 
sumed to be a semi-algebraic set. An immediate conse- 
quence of Tarski-Seidenberg's theorem, by choosing f 
to be a projection map, is that a projection of a semi- 
algebraic set is a semi-algebraic set-an observation 
which is the basis of Collins' algorithm for quantifier 
elimination. See the appendix for details. 

3 Sample of applications 

In this section we reduce several statistical problems to 
the problem of validating the truth of a Tarski sentence 
or to the problem of finding a quantifier free formula 
equivalent to a given one. For each problem, we de- 
scribe its history and show how the CAD algorithm 
and quantifier elimination advances the state of the 
art in the pursuit of its solution. We consider mem- 
bership problems for conditional independence (Sec- 
tion 3.1), determining model equivalence, inclusion, 
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and overlap (section 3.2), listing all equality and in- 
equality constraints implied by a graphical model with 
hidden variables (Section 3.3), and model identifiabil- 
ity (Section 3.4). 

3.1 The membership  problem 

Consider a set of variables U = {ul,.  . . , u,}, each with 
a set of possible values D(ui), a set of probability dis- 
tributions P each with a sample space D(u1) x . . . x 
D(un), a set of conditional independence statements 
C over subsets of U, and another conditional indepen- 
dence statement I also over subsets of U .  We say that 
C k p  I is true if and only if for all distributions in P 
for which C holds, it is the case that I also holds. The 
membership problem is to determine, given C, I and 
P ,  whether or not C bp I is true. 

Some effort has been devoted to solving the member- 
ship problem, when ui are assumed to be discrete vari- 
ables, and D(ui) are finite sets whose cardinality is not 
specified (Pearl, 1988) . Polynomial algorithms for the 
membership problem of marginal independence state- 
ments and of saturated independence statements have 
been obtained (Geiger, Paz, and Pearl, 1992; Geiger 
and Pearl, 1993) . The membership problems for ar- 
bitrary sets of conditional independence sets C, under 
the assumption that D(ui) are finite sets whose cardi- 
nality is not known, may not be decidable. The work 
by Herrmann (1995) and Studeny (1992) can be re- 
garded as steps towards establishing this claim. 

We consider three cases that can be addressed using 
quantifier elimination. In the first case, we assume 
each variable is associated with a finite set of possible 
values D(u,) and that the cardinality of this domain 
is known. Under this assumption, independence facts 
can be expressed as a finite number polynomial con- 
straints. In the second case, we assume the domain is 
the real line R and that P is the class of non-singular 
multivariate normal distributions. In this case con- 
ditional independence are expressed by asserting that 
the determinants of some minors of the covariance ma- 
trix are zero (e.g., Lauritzen, 1989), which again can 
be expressed as polynomial constraints in the param- 
eters of the family. A third case is the combination 
of discrete and continuous variables assuming a condi- 
tional Gaussian distribution (e.g., Lauritzen, 1989). 

For example, the following instance of the membership 
problem, {XI I X2, XI I X31X2) I = P  (XI I X3), 
where XI I X3(X2 stands for XI and XQ are indepen- 
dent given X2, and where P is the class of tri-variate 
normal distributions over {X1,X2,X3), with a posi- 
tive definite covariance matrix (pij), can be written 
as 

((pij) is a positive definite covariance matrix) A 

This is a short hand notation for a formula which eval- 
uates to true using Collins' decision procedure. 

A stronger version of the membership problem, which 
asks whether a disjunction of conditional independence 
statements is implied from a given set of C of condi- 
tional independence statement, has been considered 
in (Geiger and Pearl, 1993; Meek, 1995). A well 
known instance of this problem is the assertion that 
{Xl 1 X2, x1 1 X2IX3) l=p (XI I XB) v (X2 I X3) 
is true for multivariate normal distributions. This as- 
sertion can be written as a Tarski sentence and be 
validated using Collins' decision procedure. 

3.2 Model  comparison 

A model is a set of distributions P = {P,ly E I?). We 
assume each probability distribution in P is indexed 
with exactly one value of y and that y is an algebraic 
number. A polynomial (parametric) model is a model 
where r is given as the image of a semi-algebraic set 
0 under a polynomial map g, i.e., I? = g(0). For 
example, a discrete Bayesian network with or without 
hidden variables, defines a polynomial model, where g : 
Rm -t Rn maps the Bayesian network parameters to  
the joint space parameters of the distribution over the 
observable variables. All graphical models discussed 
in (Geiger and Meek, 1998) are polynomial models. 

When comparing alternative models, perhaps for the 
purpose of understanding what features of models are 
distinguishable, one can compare the sets of distri- 
butions that are parameterized by the model. Sev- 
eral authors (Verma and Pearl, 1990; Spirtes et al., 
1993) have considered the problem of model compar- 
ison on the basis of the representational strength for 
models that have no hidden variables. For instance, 
Verma and Pearl (1990) have provided a simple graph- 
ical characterization of equivalence of models. Spirtes 
et al. (1993) have also considered model comparison 
among models with hidden variables where compar- 
isons are made only on the basis of independence facts 
true for the observable variables. 

No method for comparing graphical models with hid- 
den variables appears in the literature. In this sec- 
tion we demonstrate that various comparisons between 
polynomial models can be posed as Tarski sentences 
and solved using a decision procedure for real algebra. 

A polynomial model g represents a distribution P over 
the observed variables if there is a value of the model 
parameters 0 E Q such that y = g(0) is the index for 
P .  The set-theoretic relationship is used to define 
the notions of model inclusion and equality. We say 
that gl E 92 if and only if 

where the expression 0 E 0 is a shorthand for the 
equation describing the semi-algebraic set 0. Equality 
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can be written as gl g2Agz C gl. Clearly, a sentence 
for model inequality can be obtained by the addition 
of the negation symbol to the formula above. These 
relations capture the notions of model equivalence and 
model inclusion but not model overlap. Two models 
gl,  g2 overlap if and only if 

Since we can define inclusion, equality, and overlap 
with Tarski sentences we can use the decision proce- 
dure to  answer these questions. 

Consider, for example, the naive Gaussian graphi- 
cal model with three continuous observed variables 
XI ,  Xz, X3 and one hidden variable H. Each of the ob- 
served variables are independent given the value of H; 
graphically this model has an edge between H and Xi 
for each i. The model parameters are four error terms 
ri, EH, four conditional means pi, p~ and three weights 
a that describe the linear relationship between H and 
the respective Xi. The edge weights Pi and the condi- 
tional means pi, p~ take on arbitrary real values and 
the error terms take on positive real values. Thus, the 
set of model parameters is a semi-algebraic set. These 
parameters define a joint Gaussian distribution over 
the hidden and observed variables as follows 

where N(xlp, c) is a normal density with mean p and 
variance e, h is a value of H and xi is a value of Xi. 
This model has been studied extensively in statistics 
(e.g., Martin and McDonald 1975, Rindskopf 1984). 
We call it the Heywood model. 

- -. For simplicity, we focus on the covariance structure 
of the Heywood model assuming that the conditional 
means are all zero. For this model the covariance ma- 
trix over the observed variables is as follows; 

We can now compare the Heywood model to a com- - plete Gaussian Bayesian network over three variables 
(i.e., a model in which no edge is missing). Writing 
a Tarski sentence for the assertion that the Heywood 
model is included in the complete model evaluates to 
true, and a sentence asserting the equality of the two 
models evaluates to false. In the next section we dis- 
cuss the constraints over the covariance matrix of the 
Heywood model which makes this model more restric- 
tive than the complete model. In Section 3.4, we study 
the identifiability of the Heywood model. 

3.3 Constraints over observable variables 

Geiger and Meek (1998) use a method called implic- 
itation, based on Groebner bases, by which one can 
obtain equality constraints over the parameters of the 
distributions over the observable variables implied by a 
graphical model with hidden variables. Unfortunately, 
the implicitation procedure is not guaranteed to find 
all equality constraints, nor can it be used to expli- 
cate inequality constraints over the parameters. The 
main reason for these limitations is that implicitation 
has been developed for polynomial equations over the 
complex field which is not an ordered field. 

In this section we illustrate the use of cylinder alge- 
braic decompositions (CAD) to identify both equal- 
ity and inequality constraints implied by a polyno- 
mial model. The answer given by the CAD proce- 
dure actually provides a proof, via Theorem 5 (see 
appendix), that these are the only constraints implied 
by the model. 

The general formula for this problem is (38)(g(O) - y = 
0) where g is a polynomial map between O and r. We 
seek an equivalent quantifier-free formula. A formula 
that involves y, which can be measured, and does not 
mention 8, which cannot always be measured. Our 
task is an example of the problem of algebraic curve 
implicitation (Caviness and Johnson, 1998). 

We consider the Heywood model given in the previ- 
ous section. This model has been studied in statistics 
because of the estimation problems that arise when 
the inequality constraints implied by the model are 
not satisfied by the observed data (e.g., Martin and 
McDonald 1975, Rindskopf 1984). For simplicity of 
presentation, we assume all error terms e are known. 
Consequently, the formula for this example is 

Quantifier elimination yields, using QEPCAD, the fol- 
lowing quantifier-free formula: 

These cells consist of the volumes where the product 
~ 1 2 ~ 1 3 ~ 2 3  is positive, the lines where two rij  are zeros, 
and the origin (Figure 1). These are all the constraints 
on rij implied by this model. 

3.4 Identifiability a n d  bounding problems 

One of the reasons that polynomial parametric mod- 
els are often used is because one is interested in what 
inferences one can make about model parameters or 
functions of model parameters. Typically, one assumes 
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Figure 1: The CAD for the Heywood model. 

that the distribution over the observed variables is 
known to belong to a set of distributions and asks if 
the quantities of interest (1) are uniquely determined 
(identified) (2) take on values only in some restricted 
region (bounded). 

In this section we show that one can, if the model of 
interest is a polynomial map g with model parameters 
0 and the quantity of interest Q(0) is a polynomial 
function of the model parameters, use a decision pro- 
cedure for real algebra and quantifier elimination to 
answer these questions. 

First consider the question of whether Q(0) can be 
identified when g represents the true distribution. This 
question can be written as 

When Q is the identity map, this question is referred 
to as the global identification problem. For the case 
that the true distribution P, is known we eliminate 
the quantifier for y and consider y as a term describing 
the algebraic index for the distribution. 

Conditions for global identifiability have been studied 
extensively for various types of models and in various 
areas of statistics (e.g., Yakowitz and Spragins, 1968; 
Bollen, 1989). A variety of easy-to-check sufficient con- 
ditions as well as a variety of necessary conditions for 
determining if a model is globally identifiable exist in 
the literature. Interesting examples of identification 
problems for causal quantities can be found in Pearl 
(1995). 

Consider the correlational structure of the Heywood 
model with EH = 1. The global identification question 
for this model can be written as follows. 

This sentence is false. The parameters of this model 
are not identifiable whenever there is a zero covariance 
between two or more observed variables. Furthermore, 
even if all edge weights are not zero, the model is not 
identifiable, due to a two-fold covering of the image; 
if f l  is a vector of edge weights, then -P leads to the 
same distribution over the observables. 

If one is interested in obtaining bounds for quanti- 
ties when the model g represents the true distribution, 
one can apply quantifier elimination to the formula 
(Vy)(Q0) [y = g(0) A r = Q(0)]. Note that T is a free 
variable. The result is a quantifier-free formula that 
describes the set of possible values for the quantity of 
interest, through equalities and inequalities on T.  If 
the distribution is known, then we eliminate the quan- 
tifier for y and consider y as a term describing the 
algebraic index for the distribution. Balke and Pearl 
(1994) obtain bounds for a particular graphical model 
with hidden variables. In principle, one can obtain 
identical bounds automatically using quantifier elimi- 
nation. 

4 Computational topology problems 

A Bayesian approach to model selection is to compute 
the probability that the data is generated by a given 
model via integration over all possible parameter val- 
ues with which the model is compatible and to select 
a model that maximizes this probability. An asymp- 
totic method for computing this probability (called the 
marginal likelihood) is the Bayesian Information Cri- 
teria (BIC) which was proven, under some regularity 
conditions, to be asymptotically valid for linear and 
curved exponential models (Schwarz, 1978, Haughton, 
1988). However, for general polynomial models, g(0) 
is a stratified set, consisting of a finite collection of 
smooth manifolds of different dimensions, not just a 
single smooth manifold. For polynomial models, the 
asymptotic validity of BIC remains an open problem. 

A stratified set is a set that has a stratification. A 
stratification of a subset E of Rn is a finite partition 
{Ai) of E such that (1) each Ai (called a stmtum of 
E) is a di-dimensional smooth manifold in Rn and (2) 
if Aj n z # 0, then Aj z and dj < di (frontier 
condition) where is the closure of Ai in Rn. See 
Akbulut and King (1992) for a more general definition. 
When 0 is a semi-algebraic set, and g is a polynomial 
map, then g(0) is a stratified set (e.g., Benedeti and 
Risler, 1990). 

We now pose several natural questions. First, can we 
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automatically construct a stratification of g(0)  for a 
polynomial model. Second, and seemingly easier, can 
we decide automatically whether g(0)  is a smooth 
manifold. Third, can we describe automatically the 
set of singular points of g(0)-points where BIC may 
not be valid. In the context of graphical models, it 
suffices to recall that a graphical model defines a poly- 
nomial model via a polynomial map g from the pa- 
rameter space defining the model (a subset of Rm) to 
the parameter space over the observables (a subset of 
R"). 

We do not have satisfactory answers to these ques- 
tions and so we can only give answers on small ex- 
amples. We will focus on the zero-mean, three fea- 
tures, Naive Gaussian model presented in Section 3.3. 
This example shows how a cylinder algebraic decom- 
position can be used to answer these questions. More 
generally, finding a stratification for an arbitrary semi- 
algebraic set, can be done in non-elementary complex- 
ity (e.g., Benedeti and Risler, 1990). This high com- 
plexity stems from applying n steps of the doubly ex- 
ponential ComputeCAD procedure (described in the 
appendix). A faster algorithm is not known to us. 

Consider the example in Section 3.3. There are 4 
cells of three dimensions denoted C+--, C-+-, C L + ,  
C+++, 6 one dimensional cells which are the positive 
and negative parts of the three axis, denoted Coo+, 
Coo-, Colo, C+oo, C-00, and one zero dimen- 
sional cell Cooo-the origin. It is easy to see, in 
this example, that this cylinder algebraic decompo- 
sition is actually a stratification and that the singular 
points are the union of cells of dimensions 1 and 0. 
The cylinder algebraic decomposition for f (xl, x2) = 
ax; + bxz + c - XI,  on the other hand, discussed in the 
appendix, shows that lower dimensional cells need not 
be singular points, and that deciding whether cells are 

- 
singular or not requires, in general, to examine their re- 

-- lation to higher dimensional cells-a task which seems 
computationally hard. 

5 Concluding remarks 

Hong's implementation of (partial) quantifier elimina- 
tion QEPCAD for real closed fields (Version 19) allowed 
us to run the examples that we discussed in Section 3. 
However, when we slightly increased the complexity of 

i the input, QEPCAD was running out of memory or we 
run out of patience. QEPCAD has many tuning param- 
eters and we hope that they can provide extra power 
for slightly larger problems. Another possible source 
of improvements is the special form of our input for- 
mulae. For example, the Tarski sentences for model 
comparison between discrete Bayesian networks with 
hidden variables always produces multilinear polyno- 
mials (i.e., every variable appears with degree a t  most 
1). Work on quantifier elimination of formulae of re- 

stricted form is a topic of research in symbolic algebra 
(e.g., Weisspfenning, 1988) . 
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6 Appendix 

The presentation of Cylinder Algebraic Decomposition 
(CAD) and Quantifier Elimination (QE), which are the 
subjects of this section, is based primarily on Chap- 
ters 7 and 8 of Mishra (1993). Other excellent refer- 
ences are (Schwartz and Sharir, 1983) and a collection 
edited by Caviness and Johnson (1998) which reprints 
Tarski's and Collins' original papers (1951,1975) and 
provides a historical account of the development in real 
algebra and real geometry along with many important 
references which are omitted here. The entire theory 
is rooted in classic work on polynomials. 

6.1 Basic facts about polynomials 

The set of polynomials in variables XI,  . . . , x, and coef- 
ficients in S is denoted by S[xl,  . . . , x,]. Each polyno- 
mial in S[xl, . . . , x,] can be regarded as a polynomial 
in x, with coefficients in S[xl, .  . . ,x,-11. The nota- 
tion S[xl , .  . . , X,-~][X,] expresses this idea. Through- 
out, to simplify our presentation, the set S is assumed 
to be the set of polynomials of some maximal degree 
(possibly zero) with rational coefficients. When the 
maximal degree of the polynomials in S is zero, we 
denote the coefficients with Q. The theorems that we 
cite, however, hold for more general sets of coefficients. 
For details, examine the aforementioned references. 

The Resultant of of two polynomials A(x) and B(x) 
in S[x]  with degrees m and n respectively, denoted by 
Resultant(A, B), is the determinant of the following 
(m + n )  x (m + n) matrix over S (called the Sylvester 
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matrix of A(x)  and B(x) ) :  

which consists of n staged rows of coefficients of A and 
m staged rows of coefficients of B.  

Theorem 3 A polynomial A(x) E S[x] of degree at 
least two has a repeated factor iflResultant(A, A') = 0 
where At(x)  is the (formal) derivative of A(x).  

For example, if A(%) = axZ + bx + c where a > 0, then 
A1(x) = 2ax + b, the Sylvester matrix is 

and Resultant(A, A') = a(4ac - b2). Consequently, 
A(%) has a repeated factor iff its discriminant b2 - 4ac 
equals zero. 

The next definition and theorem establish conditions 
for two polynomials A(x) and B(x)  to have a common 
divisor of degree i. 

The i-th principal subresultant coeficient of A and B, 
denoted by PSC,(A, B ) ,  is the determinant of the ma- 
trix Mjm+n-Z4 where m is the degree of A(x) ,  n is 

the degree of B(x) ,  0 5 i 5 min(m,n),  and where the 
matrix ~jm+n-Zi) 1s . obtained as follows: Start with 

the Sylvester matrix of A and B. Remove the first i 
rows that correspond to the coefficients of A and the 

- -- first i rows that correspond to the coefficients of B. 
Remove the first i columns and the last i columns. 
(Note that the remaining matrix is a square matrix 
of size m + n - 29. The following theorem, which 
demonstrates the importance of these definitions, can 
be found, for example, in Mishra (1993), Corollary 
7.7.9. 

T h e o r e m  4 Let and A(x) and B(x)  be univan'ate 
polynomials of positive degree m and n,  respectively, - with coeficients in S .  Then, for all 0 < i 5 
min(m,n),  A(x) and B(x)  have a common divisor of 
degree i iff 

For example, if A(%) = axZ +bx+c and B(x)  = 2ax+b, 
then Mjm+n-2) is . a matrix of size 1 x 1 which equals 
the constant 2a, and PSCl(A,B) = 2a. Recalling, 
that PSCo(A, B )  = a(4ac - b2),  we see that A and At 

have a common divisor of degree 1 iff b2 - 4ac = 0 and 
a # 0. 

Let A(x)  be a polynomial of positive degree nl 
and B(x )  a polynomial of positive degree nz. De- 
fine n = nl if nl > nz and n = nz other- 
wise. The principle subresultant coeficient chain of 
A and B is the sequence PSCn+l = l ,PSCn = 
bn2, where bn2 is the coefficient of xn2 in B(x) ,  
PSCn-1 (A ,  B ) ,  . . . , PSCi(A, B) ,  . . . , PSCo (A,  B) .  
Theorem 4 tells us that by knowing this chain we can 
determine the degree of the common divisor of A and 
B. 

6.2 Cylinder Algebraic Decomposition 

An element u of R is called a real algebraic number if 
for some nonzero polynomial f (x )  E Q[x],  f (u) = 0, 
where Q[x] are the set of polynomials in x with ratio- 
nal coefficients. Real algebraic numbers form a field. 
A real algebraic number a can be finitely represented 
as a triplet ( f  ( x ) ,  1 ,  T )  where f is a polynomial in Q[x] 
such that f (a) = 0 and where ( I ,  r )  is an interval that 
contains a and no other root of f .  In this represen- 
tation, addition, subtraction, multiplication, division, 
equality to zero, shrinking the interval ( I ,  T )  by a fac- 
tor of a t  least 2, normalizing ( 1 , ~ )  such that 1 and T 

will have the same sign, are operations that can all be 
implemented in polynomial time (in the degree of f 
and the log size of the coefficients of f ) .  See Mishra 
(1993) for details. These operations on real algebraic 
numbers allow us to use finite representations of such 
(possibly irrational) numbers and explicate them in an 
arbitrary precision whenever needed. 

Definition: A decomposition of Rn is a finite collec- 
tion of disjoint connected subsets of Rn called cells. A 
cylinder algebraic decomposition (CAD) of Rn is de- 
fined inductively as follows: When n = 1, CAD is a 
partition of R into a finite set of real algebraic num- 
bers, and into the finite and infinite open intervals 
bounded by these numbers. A CAD of Rn is defined 
in terms of a CAD K' of Rn-l via an auxiliary poly- 
nomial 

gc1 (zl xn) = 
g ~ ' ( x 1 , .  . . rxn-1, ~ n )  E Q[xl , . .  . , x n - ~ I [ ~ n ]  

one per C' E K'. The cells of K are of two kinds: 

1. For each C' E K', we have C' x ( R  U {f oo)), 
namely, a cylinder over C .  

2. For each Ct E K', the polynomial gc,(p',xn) has 
m distinct real roots for each pt E C': 

each ri being a continuous function of p'. The 
following sectors and sections are cylinders over 
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ALGORITHM ComputeCAD(F j) 

Input: F C Q[xl ,  ... ,x i] .  
Output: ( K j , a j )  where K j  is an F-sign-invariant CAD of Rj and 

aj  is a set of algebraic sample points, one per cell in K j .  
Recurse: If j > 1, then do 

O(F) := Ol(F) U Oz(F) U iPs(F) 
(Kj-l ,aj-1) := CompteCAD(@(F),  j - l ) ,  

else find the roots T I , .  . . , rm of all polynomials in F and do 
K I  := {[ -m,r l ) ,  [ ~ l , r l ] ,  ( T I , T Z ) ,  . . . , (rm,+m]) 
0 1  := { T I  - 1, T I ,  ( T I  + T2)/2, . . . , T m ,  T ,  + 1) 
Return (K1, a l )  

Lift: For every cell Ci E Kj-l  do 
1. Compute the product of all polynomials in F that do not vanish at 

the sample point ai of C, and call the resulting polynomial a(ai,  x )  
2. Find the roots T I , .  . . , T ,  of x(a i , x )  
3. Set Kj,i := {{Ci x  TI)), {Ci x [ r l , ~ ~ ] ) ,  {Ci x (r l , rz) ) ,  . . . , {Ci x ( ~ m , + m ] ) )  

Comment: Kj,, are the cylinders over C,. 
4. Set aj,i := { ( f f i j r l  - 11, ( f f i , ~ l ) ,  ( f f i ,  ( T I  + ~ 2 ) / 2 ) ,  . . . , (ffilrm + 1) ) 

Comment: aj,i are the algebraic sample points for the cylinders over Ci. 
K j  := ui K j j  ; aj  := ui aj,i 
Return ( K j ,  a j )  

Figure 2: An algorithm for computing a CAD of R3 

C': To find an F-sign-invariant CAD K of R,  one con- 
structs the auxiliary polynomial n ( x )  = l T p ( z ) E F ~ ( ~ ) ,  

c; = {b',xn)Ixn E [ -w ,r lb ' ) ] ) ,  lists the real roots a1,. . . ,am of ~ ( x ) ,  and sets K t o  be 

(31 = { (~ ' , xn) Ixn  E [ T I ~ ' ) , T I ( P ' ) ~ ) ,  these m numbers joined with the corresponding m + 1 

c; = {(~ ' ,xn)1xn E [r lb ' ) , rzb ' ) l ) ,  intervals. The key device for listing the real roots of an 

Cz = {b' ,xn)Ixn E [r2(pt),~2b')1}, arbitrary polynomial in Q[x] is an algorithm for root 
. . . separation which constructs a set of intervals (li,r,), 

cm = {(p',xn)lxn E [ ~ m b f ) , ~ m ( P ' ) I } ,  i = 1,. . . , m, each containing exactly one root such 

c& = {(p',xn)Ixn E [r l (pt ) ,+m) that the representation of ai is ( ~ ( x ) ,  li ,  T ~ ) .  The algo- 
rithm to find such intervals is a binary search. Start 
with an interval [-M, MI which contains all roots of 
a(x) .  Divide the interval into two equal intervals left 

An example of a CAD K of R via the two real 
roots a1 and a2 of p(x) = ax2 + bx + c (assuming 
they exist) is given by the cells { [ - m , a l ) ,  [ a l , a l ] ,  
( a l ,  az),[ffz, a z ] ,  (az ,  m]}. This CAD has the prop- 
erty that the sign of p(x) is constant in each cell of 
K. Consequently, determining whether 3x(p(x) 2 0)  
is true reduces to the problem of checking one sample 
point from each cell. The sample points can be se- 
lected to be real algebraic points, e.g., al - 1, a l ,  (a1 + 
a2)/2, az ,  a2 + 1. This example demonstrates how a 
CAD K can be used to determine whether a Tarski sen- 
tence is true. We now discuss how to construct such a 
sign invariant CAD and how to extend this construc- 
tion to higher dimensions. 

Let F C Q[x] and K be a CAD of Rn. Then K is an 
F-sign-invariant CAD if for every p(x) E F and every 
C E K , either p(x) > 0 for all x E C ,  or p(x) = 0 for 
all x E C ,  or p(x) < 0 for all x E C. 

aAd' right. If left contains one root, stop dividing this 
interval, else continue recursively. Similarly, if right 
contains one root, stop dividing this interval, else con- 
tinue recursively. The constant M can be defined in 
terms of the coefficients of ~ ( x )  and the test for the 
number of real roots in a given interval is based on 
Sturm's classical theory. For details consult Mishra 
(1993). 

The extension to higher dimensions is achieved by a 
certain projection operator. For a set of polynomi- 
als F = { f l , .  . . , f,) in Q[xl , .  . . ,xn],  where f! is the 
coefficient of xk in f i ,  the projection O(F)  of F on 
{ X I , .  . . , xn)  is defined by O(F) = 8 1  ( F )  U O2(F) U 
0 3 ( F )  where 
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Q3(F) = {PSCfn(fi(zl,  . . . , x  n ) , f j ( ~ l , . . . , ~ n ) )  generating a quantifier-free formula equivalent to 11,. 
1 1 < i < j 5 s,O 5 m 5 min(di,dj)). In describing this procedure, we assume 11, is given in 

prenex normal form, whereby all quantifiers appear in 
the beginning of the sentence, and only disjunctions, 

For example, for f (xl, xz) = ax; +bxz +c-XI, we have conjunctions, and negations are used. Every first or- 
@l({f )) = {., b, c - x l } l  '~({f 1 = {4a2((c- b2/4a) - der sentence can be rewritten in this way. In fact, XI)) and Q3(F) is empty because consists of in the case of Tarski sentences, we do not even need 
one polynomial. The importance of Q(F)  is demon- negation because i(p(x)  > 0) can be replaced with strated by the following theorem (Based on Chapter 8 

p(x) = Vp(x) < 0, in Mishra (1993)). 

Theorem 5 (Collins) Let F C Q[xl, . . . , x,] and 
@(q c &[XI,. . . ,xn-11 be the projection of F on 
{xl , . . . , xn- 1). Let Kn- 1 be a Q(F) -sign-invariant 
CAD of Rn-I and ai be an algebraic point from cell Ci 
of Kn-1. Also, for every cell Ci of Kn-l, let ?r(ai, x) 
be the product of all polynomials in F that do not van- 
ish at ai. Let TI , .  . . , r, be the roots of ?r(ai, x). Then, 
Kn = Ui Kn,i, where 

is a F-sign-invariant CAD of Rn and {(ai,rl  - 
11, ( f f i , ~ ~ ) ,  (ffi, (TI + T Z ) / ~ ) ,  . . ., (ffijrrn + 1)) al- 
gebraic sample points for the cells of Kn.  

Theorem 5 prescribes a recursive algorithm to com- 
pute a F-sign-invariantCAD of a set F of polynomi- 
als in Q[xl,. . . , x,]. We demonstrate this claim on a 
simple two dimensional example. The complete al- 
gorithm is given in Figure 2. Consider F = {f), 
where f (XI, xz) = ax; + bxz + c - XI.  We have 
computed earlier and found that Q(F) = {a, b, c - 
XI ,  4a2((c - b2/4a) - XI)). This set is in Q[xl]. The 
roots of all polynomials in Q(F)  are {al = c - b2/4a, 
a2 = c). Note that, for the purpose of finding roots, 
we may as well replace Q(F)  with the (normalized) set 

- 
(1, c - XI, (c - b2/4a) - X I )  which has the same set of 

-- roots. In our example, these points are simply the xl 
coordinates of the minimum of the parabola (as a func- 
tion of x2) and its intersection with the axis XI. Now, 
a Q(F)-sign-invariant CAD of R consists of 5 cells, 
{([-m,al), [al ,  all, ( a l l  4, [ a ~ , a z I ,  (a2, +ml, de- 
noted by, C l , .  . . , C5, respectively. We can now apply 
Theorem 5 to construct the cells of a F-sign-invariant 
CAD of R2. The only cell above 9 is Cl x [-m, +m]. 
To compute the cells above C5 we compute the two 
roots rl and rz of f (XI, xz) at XI = a 2  + 1 and the five 

- cells are {C5 x [-m, rl),C5 x [TI, rl],C5 x (TI, ~2)!C5 x 
[rz, rz],C5 x (r2, + a ] ) .  All other cells over C2, C3 and 
Cq are computed similarly. We denote with Cij the 
cells that are cylinders over Ci. 

Suppose $ is a Tarski sentence given in the form 
(Qlxl) . . . (Qnxn) M(xl, . . . , xn) where Qi is either a 
universal quantifier V or an existential quantifier 3, 
and where M is a quantifier-free formula involving a 
set of polynomial F C Q[xl,.  . . , x,]. Collins' algc- 
rithm for evaluating the truth value of $ is as follows. 
Construct an F-sign-invariant CAD K of Rn in the or- 
der X I , .  . . ,xn.  The resulting CAD forms a tree. The 
leaves of the tree represent the cells of K .  The nodes 
in level i represent a CAD of R< The children of a 
node representing a cell C in a CAD of R%epresent 
the cylinders over C in the CAD of Ri++'. The tree is 
regarded as an and-or tree where in level i there is an 
a n d i f Q i = V a n d a n o r i f Q i = 3 .  

Evaluating the truth value of 11, is done recursively as 
follows. First, each leaf, representing cell C, is eval- 
uated to true or false depending on whether M(a )  is 
true or false, where a is the sample point of C. The 
truth value of a node C in level i is determined by the 
truth value of its children. If Q, = V, then C evalu- 
ates to true iff all its children evaluate to true, and if 
Q, = 3, then C evaluates to true iff at least one of its 
children evaluates to true. The sentence 11, is true iff 
the root of the and-or tree evaluates to true. firther- 
more, each leaf represents a cell in a CAD of Rn, which 
is described with a quantifier-free Tarski sentence. The 
sentence $ is equivalent to the quantifier-free formula 
obtained by applying the and/or connectives, as pre- 
scribed by the and-or tree, to the quantifier-free for- 
mula that describe the leaves. 

In the example of Section 6.2, the nodes in the first 
level correspond to the cells 4,. . . Cs, and the nodes 
in the second level correspond to the cells {Ci,j). Node 
C1 has one child Cl,l, node C2 has three children 
C2,1, C2,2, C2,3, and nodes C2, C3, and C5, each have 
five children. The formula (3xl)(Vx2)ax; + bxz + c - 
xl > 0 is true because GF1 evaluates to  true and 
so C1 evaluates to true as well. Consequently, since 
xl is existentially quantified, the root is evaluated to 
true. The cell C1 is given by the quantifier-free formula 
xl < c - b2/4a which has a clear geometrical interpre- 
tation; The formula is true whenever xl is smaller than 
the minimum of the parabola ax; + bx2 + c. 

6.3 Quantifier Elimination 

Collins' algorithm for constructing a cylinder algebraic 
decomposition provides a simple procedure for evalu- 
ating the truth value of a Tarski sentence 11 and for 


