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Abstract 

We provide a new characterization of the 
Dirichlet distribution. This characterization 
implies that under assumptions made by sev- 
eral previous authors for learning belief net- 
works, a Dirichlet prior on the parameters is 
inevitable. 

1 Introduction 

In recent years, several researchers have investigated 
Bayesian methods for learning belief networks [CH91, 
Bu91, SDLC93, HGC941. These approaches all have 
the same basic components: a scoring metric and a 
search procedure. The scoring metric takes data and 
a network structure and returns a score reflecting the 
goodness-of-fit of the data to the structure. A search 
procedure generates networks for evaluation by the 
scoring metric. These approaches use the two com- 
ponents to identify a network structure or set of struc- 
tures that can be used to predict future hypotheses or 
infer causal relationships. 

The Bayesian approach can be described as follows. 
Suppose we have a domain of variables {ul, . . . , u,) = 
U, and a set of cases {C1, . . . , C,) = D where each 
case is an instance of some or of all the variables in 
U. We sometimes refer to D as a database. Let 
(Bs ,  Bp) be a belief network, that is, Bs  is a di- 
rected acyclic graph , each node i of B, is associated 
with a random variable ui and Bp is a set of con- 
ditional distributions, p(ui)ui4,.  . . ,ui,), 1 < i < n, 
where ui, , . . . , uik are the variables corresponding to 
the parents of node i in Bs .  (For more details, consult 
[Pe88]). Let B: stand for the hypothesis that cases 
are drawn from a belief network having the structure 
Bs. Then a Bayesian measure of the goodness-of-fit of 
a belief network structure Bs is p ( ~ $  ID, <) given by 
p(B$ [D, <) = c . p ( ~ $ l < ) p ( ~ I ~ t ,  <) where c is a nor- 
malizing factor and < is the current state of knowledge. 

To compute ~ ( D I  B;, <) in closed form several assump- 
tions were made. First, the database D is a multino- 
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mial sample from some belief network (Bs, Bp).  Sec- 
ond, for each network structure the parameters asso- 
ciated with one node are independent of the parame- 
ters associated with other nodes (global independence 
[SL90]) and the parameters associated within a node 
given one instance of its parents are independent of 
the parameters of that node given other instances of 
its parent nodes (local independence [SLgO]). Third, 
if a node has the same parents in two distinct net- 
works then the distribution of the parameters asso- 
ciated with this node are identical in both networks 
(parameter modularity [HGC94]). Forth, each case is 
complete. Fifth, the distribution of the parameters 
associated with each node is Dirichlet. 

The last two assumptions are made so as to create 
a conjugate sampling situation, namely, after data is 
seen the distributions of the parameters stay in the 
same family- the Dirichlet family. A relaxation of the 
assumption of complete cases was carried out by pre- 
vious works (e.g., [SDLC93]). The contribution of this 
paper is a characterization of the Dirichlet distribution 
which enables one to show that the fifth assumption 
is implied from the first three assumptions and from 
one additional plausible assumption that if B1 and 
Bz are equivalent belief networks (i.e., they represent 
the same independence assumptions) then the events 
B! and B; are equivalent as well (hypothesis equiva- 
lence [HGC94]). We make this self-evident assumption 
explicit because it does not hold for causal networks 
where two edges with opposing directions correspond 
to distinct events. 

Our contribution can be described using common sta- 
tistical terminology as follows. We use this termi- 
nology because our result might be found applicable 
in other statistical uses of the Dirichlet distribution 
and because it falls under the broad area of charac- 
terizations of probability distribution functions. Sup- 
pose s and t are two discrete random variables hav- 
ing finite domains, { ~ i ) f = ~  and {tj)y=l, respectively. 
We wish to infer the joint probability p(s , t )  from a 
sample of pairs of values (si,t j)  of s and t .  The 
standard Bayesian approach to this statistical infer- 
ence problem is to associate with p(si , t j)  a parameter 
Oij (often called the multinomial parameter), assign 
{Oi j I l  < i < k,  1 < j 5 n )  a prior joint pdf and com- 
pute the posterior joint pdf of {Oij) given the observed 
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set of pairs of values. There are two closely-related 
variants to this approach which can be described as 
follows. 

Let Oi. = xjn=l Oij stand for the multinomial parame- 
ter associated with p(s = si) and let Bjli = %ij/ Cj Bij 

stand for the multinomial parameter associated with 
p(t = t j  1s = si).  Furthermore, let Or. = {di.)fi; and 
OJli = {ejli)y;;. We assume that {Or., 8J111 . . . , O J ~ )  
are mutually independent and that each has a prior 
pdf. Now according to Bayesian practice we com- 
pute the joint posterior appropriately. That is, we up- 
date the pdf for Or. according to the counts of s = si 
in the observed pairs and update the pdf of eJli ac- 
cording to the counts of t = t j  in all pairs in which 
s = si.  In a symmetric fashion, let 0.j = zfz1 eij, 

0. $13 . = Bij/ xi Bij,  8.J = {0.~)3;; and BIl j  = { o ~ ~ ~ ) ~ : ~ .  
Now we assume that (0. J ,  Bill, . . . , BIln) are mutually 
independent and that each has a prior pdf and we com- 
pute the posterior pdf for 0 . j  according to the counts 
o f t  = t j  and the posterior pdf of Orlj according to the 
counts of s = si in all pairs in which t = t j .  

To make these techniques operational one must choose 
a specific prior pdf for the multinomial parameters. 
The standard choice of a pdf for {8,j) is a Dirichlet 
pdf usually for pragmatic reasons. When such a choice 
is made, it can be shown that {81.,8Jll,.. . eJlk) are 
indeed mutually independent and that each has a prior 
Dirichlet pdf. Similarly, (0. J ,  Bill , . . . , Orln) are mutu- 
ally independent and each has a prior Dirichlet pdf. 

The surprising result proved in this article is that if 
these independence assertions are assumed to hold, 
and under the assumption of strictly) positive pdfs, 
then a prior Dirichlet pdf for \ eij) is the only possi- 
ble choice. The assumption of strictly positive pdfs 
can possibly be dropped without affecting the conclu- 
sion but we have not carried out a proof of this claim. 
The implication of this result to  learning Bayesian net- 
works is discussed in Section 3. A preliminary account 
of analogous results for Gaussian networks is reported 
in Section 4. 

2 Background and Technical 
Summary 

The Dirichlet pdf is defined as follows. Let $1, . . . , $1 
be positive random variables that sum to 1. Then 
d l ,  . . . , $1- 1 have a Dirichlet pdf f if 

where #r = 1 - ~fi: di and aj are positive constants 
(See, e.g., [De70, Wi621). 

We use the following conventions. Suppose (13~~1, 
1 5 i 5 k, 1 < j < n,  is a set of positive random vari- 
ables that sum to 1. Let Bi. ,  B . j ,  er., 0. J ,  8jli, Bilj ,  8 Jli, 

and BIlj  be defined as in the introduction. Conse- 
quently, 8i.Bjli = 8.jOilj for every i and j.  Let fu 

be the joint pdf of {Oij), fI be the pdf of Or. ,  and 
fJli be the pdf of 8 j l i .  Similarly, let fJ be the pdf of 
0. J ,  and fIlj be the pdf of eIlj. Finally, let fIJ be the 
joint pdf of Or., BJll,. . . , BJlk and fJI be the joint pdf 
of 8.J1 8111,. . . ,611,. 

A Dirichlet pdf for {Oij) is given by 

where e k n  = 1 - CAOij, A = { ( i , j ) ) l  5 i ,  j 5 n , i  # 
k or j # n), c is the normalization constant and Qij 
are positive constants. 

We observe that fu and fIJ are related through a 
change of variables. Since both {Bi.):=l and {ejli)jn,l 

are defined in terms of {8ij) and since Oi j  = ei.Ojlil 

there exists a one-to-one and onto correspondence be- 
tween {Oij) and {Oi.) U {Bjli). The Jacobian J k , n  of 
this transformation is given by 

The following lemma provides a known property of 
the Dirichlet distribution. A slightly weaker version is 
stated in [DL931 (Lemma 7.2). 

Lemma 1 Let {Oij), 1 5 i 5 k, 1 5 j 5 n, where 
k and n are integers greater than 1, be a set of posi- 
tive random variables having a Dirichlet distribution. 
Then, fI (Or.) is Dirichlet, fJli (0 ~ 1 ~ )  is Dirichlet for ev- 
ery i, 1 5 i 5 k, and {Or., 8 ~ 1 1 ,  . . . , e  ~ 1 ~ )  are mutually 
independent. 

Proof: Set Bij = Oi.ejli in Eq. 2, multiply by Jkn, and 
regroup terms. 

The main claim of this article is that,  under the as- 
sumption of a positive pdf for {Bij), the converse holds 
as well. More specifically, we prove the following the- 
orem. 

Theorem 2 Let {8ij), 1 5 i < k, 1 5 j 5 n, 
Cij 8ij = 1, where k and n are integers greater than 
1, be positive random variables having a positive pdf 
f ~ ( ( 8 ~ j ) ) .  If {Or., O J l l ,  . . . , O J I k )  are mutually inde- 
pendent and (0. J ,  , . . . BIln) are mutually indepen- 
dent, then fu({8jj)) is Dirichlet. 

Recall that fu can be written both in terms of fIj 

and in terms of fJI by a change of variables and using 
the Jacobian given by Equation 3. Since both repre- 
sentations must be equal, and using the independence 
assumptions made by Theorem 2 to factor fIJ and fJI, 
we get the equality, 
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This equality, which is in fact a functional equation, 
summarizes the independence assumptions stated in 
Theorem 2. 

Methods for solving functional equations such as Eq. 4, 
that is, finding all functions that satisfy them un- 
der different regularity assumptions, are discussed in 
[Ac66]. We use the following technique. First, we show 
that any positive solution to Eq. 4 must be differen- 
tiable in any order (AczCl, 66, Section 4.2.2, "Deduc- 
tion of differentiability from integrability"). Then we 
take repeated derivatives of Eq. 4 and obtain a differ- 
ential equation the solution of which after appropriate 
specialization is the general solution of Eq. 4 (AczCl, 
66, Section 4.2, "Reduction to differential equations"). 
The proof is given is the appendix. 

Note that when n = k = 2 and by renaming of variable 
and function names, Eq. 4 can be written as follows: 

where 
x = y t  + (1 - y)w 

and where y, z and w replace Q.j=l, Qi=llj=l, Q i = l l j = 2 ,  

respectively. 

3 Implications For Learning 

We now explain how our characterization applies to 
learning belief networks. We concentrate on belief net- 
works for two discrete variables s and t whose joint 
distribution is p(s, t) .  The n-variate case is discussed 
in [HGC95]. There are three possible belief networks 
with two nodes. The network that contains no edge 
between its two nodes s and t ,  a network s + t and 
the network t + s. The first network Bo corresponds 
to the assertion that s and t are independent while 
the second network B1 and the third one B2 assert 
that s and t are dependent. The last two belief net- 
works are equivalent, B1 represents the factorization 

and B2 represents the factorization 

We shall first examine the two complete networks B1 
and B2. We assume that if two networks B1 and B2 
are equivalent (as is the case in our example) then 
the corresponding events B: and B; are equivalent 
(hypothesis equivalence [HGC94]). Recalling the no- 
tations introduced in the introduction, we have that 
Oi. = Cy=l Oij stand for the multinomial parame- 
ters associated with p(s  = si) and Ojli = Bij/ Cj Oij 
stand for the multinomial parameters associated with 
p(t = t j  I S  = si). Thus, 

Due to these equalities and using local and global in- 
dependence to factor ~ I J  and f J ~ ,  we immediately ob- 
tain Equation 4 (dropping the conditioning events is 
valid because BF and Bg are equivalent). Thus for the 
two complete networks the only possible prior on their 
parameters is, according to Theorem 2, the Dirichlet 
distribution. 

Note that we only use three assumptions: a multi- 
nomial sampling situation, local and global indepen- 
dence, and hypothesis equivalence. Implicitly, since we 
condition on B:, is the assumption that each complete 
structure has a positive probability to be manifested. 

The prior for any non-complete network follows from 
the assumption of parameter modularity which says 
that the pdf associated with a node under the assump- 
tion that a specific network generates the data is the 
same as the pdf of the parameters of that node given 
another network generates the data provided that the 
set of parents is identical in the two networks. In our 
two-variables network, for example, the parameters Oj. 

which are associated with node s have the same pdf 
when conditioned on B1 and when conditioned on Bo 
because in both networks s has the same set of parents 
(the empty set) and similarly for node t .  That is, 

These equalities imply that the prior for the parame- 
ters of Bo is Dirichlet as well. Thus, parameter mod- 
ularity is the assumption that extends our result from 
complete to non-complete networks. 

This result of the inevitable choice of a Dirichlet prior 
for two-variables networks is easily generalized to the 
n-variate case by induction and without the need to 
solve any additional functional equations. The induc- 
tive proof uses the fact that a cluster of variables each 
having a Dirichlet distribution is distributed Dirichlet 
as well. For details consult [HGC95]. 

Recall that the exponents of Oij of a Dirichlet distribu- 
tion can be written as Na i j  - 1 where N is the "equiv- 
alent sample size" (the size of an imaginary database 
of complete cases-the prior sample-upon which the 
prior Dirichlet is based) and aij is the expectation of 
Oij. The equivalent sample size reflects the confidence 
of the user and aij represents the relative frequency 
of the pair (i, j) in the prior sample. A joint Dirich- 
let prior is therefore quite restricting because it allows 
only one equivalent sample size for the entire domain. 
That is, there is no way to express different confidence 
levels regarding the parameters of different parts of the 
network. Thus the practical ramification of our charac- 
terization is that the commonly-made global and local 
independence assumption is inappropriate whenever a 
single equivalent sample size is not sufficient to de- 
scribe prior knowledge. Such a situation occurs, for 
example, if knowledge about 01. is more precise than 
knowledge about 0 J l i .  

One possibility for overcoming this limitation of the 
Dirichlet prior is to replace the notion of a single equiv- 
alent sample size with equivalent database. Namely, 
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we ask a user to imagine that she was initially com- 
pletely ignorant about a domain, having an uninfor- 
mative prior with equivalent sample size(s) close to 
the lower bound. Then, we ask the user to specify 
a database D, that would produce a posterior den- 
sity that reflects her current state of knowledge. This 
database may contain incomplete cases. Then, to score 
a real database D,  we score the database D, U D, us- 
ing the uninformative prior and a learning algorithm 
that handles missing data. This way of specifying a 
prior yields a mixture of Dirichlet distributions which, 
according to our result, cannot satisfy the local and 
global independence assumption. 

4 Discussion 

The independence assumptions made by Theorem 2 
can be divided into two parts: {BJI1, . . . , BJlk) are 
mutually independent and {BIll, . . . , BIln) are mutu- 
ally independent (local independence) and Or. is in- 
dependent of {B JI1, . . . , e  and 8. J is independent 
of {Bill,. . . , BIln} (global independence). A natural 
question to ask is whether global independence alone 
implies a joint Dirichlet pdf for {Bij}. 

This question is particularly interesting in light of the 
analysis of decomposable graphical models given by 
[DL93]. Dawid and Lauritzen term a pdf that satisfies 
global independence a strong hyper-Markov law and 
show the importance of such laws in the analysis of 
decomposable graphical models. We now show that 
the class of strong hyper-Markov laws is larger than 
the Dirichlet class. 

When n = k = 2, and using the notations of Equa- 
tion 5 the new functional equation can be written as 
follows: 

where x = yz + (1 - y)w. Note that Eq. 5 is obtained 
from this equation by setting g(z, w) = gl (z)g2(w) and 
f ( t i ,  t2) = fl ( t l )  f2(t2).  These equalities correspond to 
local independence. 

Let fu be a joint pdf of {Bij} given by 

where K is the normalization constant, aij are posi- 
tive constants and H is an arbitrary positive integrable 
function. That this pdf satisfies global independence 
can be easily verified. It can in fact be shown, by solv- 
ing Eq. 6,  that every positive strong Hyper Markov law 
can be written in this form (when n = 2 and k = 2). 
This solution includes the Dirichlet family as a proper 
subclass. 

Since H is a single function that does not depend on a 
particular network, one can conclude that if local pa- 
rameter independence is assumed to hold in one net- 
work, then fu must still be Dirichlet and therefore, 

due to Lemma 1, local parameter independence must 
hold for all networks. We have so far proved this claim 
for two-variables networks but we believe it holds for 
the n-variate case as well. 

As a final comment, we should mention that a func- 
tional equation which restricts the possible prior dis- 
tributions for the parameters of Bayesian networks can 
be formulated for other sampling situations not nec- 
essarily for the multinomial sampling which was as- 
sumed in our discussion so far. As another example, 
consider a two-continuous-variables domain {xl,  2 2 )  

having a bivariate-normal distribution. Constructing 
a prior for the parameters of such Gaussian networks 
and performing the prior-to-posterior analysis was car- 
ried out in [GH94, HG951. Let {ml, vl, mall, b12, vzl l )  
and {m2, v2, rnll2, bzl ,  vl12} denote the parameters for 
the network structures x1 + x2 and x1 t x2, respec- 
tively. That is, ml is the mean of xl and vl is the 
variance for $1.  Collectively, these are the parameters 
associated with node x1 in the first network. The pa- 
rameters associated with node 2 2  are the conditional 
mean m211, the regression coefficient blz of 2 2  given 
xl and the conditional variance v211 Now assuming 
global parameter independence and hypothesis equiv- 
alence and using the Jacobian given in [HG95] yields 
the functional equation 

where f l ,  fill, f 2 ,  and f l 1 2  are arbitrary density func- 
tions, and where 

These relationship are well known from path analysis 
and can be derived from Eq. 4 in [HG95]. 

We have solved this functional equation and found that 
the only integrable solutions are such that fl (vl) is an 
inverse gamma distribution, that is, l /vl  has a gamma 
distribution, fl (ml lvl) is a normal distribution, and 
similarly for f2  m2, v2). The conditional distribu- 
tion fill (b12, v2ll \ has an interesting form. An inverse 
gamma distribution for v2ll times a Normal distribu- 
tion for b12 times an arbitrary function H(b12/vzll). 
The arbitrary function is not surprising since the func- 
tional equation only encodes global independence and 
so the solution depends on an arbitrary function just 
as for multinomial sampling (Equation 7). 

The natural question is now what does local indepen- 
dence mean for Gaussian networks. Because the sub- 
jective variance of b12 actually depends on v211, we can- 
not assume that b12 and 21211 are independent. The an- 
swer is that local independence for Gaussian networks 
means that the standardized regression coefficient b12 
is independent of the conditional variance V a l l  at each 
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node. When adding this assumption, which fully par- 
allels the discrete case, we get that H is the exponen- 
tial function and therefore f211(b121v211) is a normal 
distribution and f211 (v211) is an inverse Gamma distri- 
bution. 

Consequently, it can further be shown that a bivari- 
ate normal-Wishart distribution is the only possible 
prior on the joint space parameters (i.e., the inverse 
covariance matrix and the vector of means) if we as- 
sume global parameter independence, local parameter 
independence for one network and hypothesis equiva- 
lence. Indeed this was the prior chosen by [GH94]. An 
analogous result holds for the n-variate case as well. 
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Appendix: proof1 

Differeniability from Integrability 

By renaming of variable and function names, and by 
absorbing the Jacobians into the new function defini- 
tions, Eq. 4 can be written as follows: 

where 

and where 

Note that the free variables in Eq. 9 are yl, . . . , yn-1 
(yj replaces 6.j) and t i j ,  1 < i < k - 1, 1 < j 5 n 
(zij replaces Oilj). All other variables which appear in 
Eq. 9 are defined by Eqs. 10 and 11. 

- 

'This proof first appeared in [GH95]. 



Furthermore, we may consider xl . . . , xk (xi replaces 
Bi.) and wij = y, 1 5 i 5 k, 1 < j 5 n - 1 (wij 
replaces BjIi) to be free variables and rewrite Eq. 9 in 
term of these variables, namely, 

k 

YO(XI , .  . . , x  k - l ) n f i ( ~ i , l ~ . - . ~ ~ i , ~ - l )  = 
i=l 

where 
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and where xk and yn are defined by Eq. 11. This 
symmetric representation of Eq. 9 will be used in the 
derivation of its solution. 

We assume that all functions mentioned in Eq. 9 orig- 
inated from pdfs and thus are (Lebesgue) integrable 
in their domain. We shall now show that this assump 
tion implies that each set of functions that solves Eq. 9 
consists of functions for which any finite-order partial 
derivative exists for every point in their domain. The 
importance of this technical claim is that in order to 
find all positive integrable functions that satisfy Eq. 9, 
it is permissible to take any derivative at any point in 
the domain because it exists. 

By setting zij = l l k ,  for all i and j, in Equa- 
tion 9 we get that fo(yl,  . . . , yn-1) is proportional 
to nfZl fi (yl , . . . , yn- 1).  Similarly, by setting wij = 
l l n  in Eq. 12, gO(xl,.  . . , ~ k - ~ )  is proportional to n,"=, g j  (31, . . . , z k -  1). Thus if we prove that each gj  , 
j = 1, . . . , n,  has any-order derivative, then so does 
go. Furthermore, any property that we prove about 
g . ,  j = 1,. . . , n ,  holds true for fi ,  i = 1 , .  . ., k, due to 
the symmetric representation of ~ q .  9 given by ~ q .  12. 

Since all functions are positive, we can take the loga- 
rithm of Eq. 9. Since all functions are integrable and 
positive then so are their logarithms. Let now jo be 
an index such that 1 5 jo 5 n. We take a logarithm 
of Eq. 9 and integrate the resulting equation wrt 
all variables except for the variables zijo, 1 5 i < k. 
Consequently, we obtain, 

where h(x) stands for In h(x) , M is a constant, Y = 
( ~ 1 ,  . . . , ~ n - ~ ) ,  Zj, is a vector containing all variables 

2 ~ i t h  respect to 

zij except those where j = jo, Dj is the domain of gj,  
and D, the domain of fo. 

Since, the right hand-side of Eq. 14 is integrable, it 
follows that gj, is continuous for every 1 5 jo 5 n. 
Hence, go is continuous as well. Thus, due to the sym- 
metric functional equation (Eq. 12), fi are also contin- 
uous functions. Having now continuous functions on 
the right hand-side of Eq. 14, it follows that gj, has a 
first derivative wrt each of its arguments. Thus, due 
to Eq. 12, each fi also has a first derivative wrt each of 
its arguments. Consequently, by Eq. 14, it follows that 
gj, has a second derivative wrt each of its arguments. 
Repeating this argument yields the desired conclusion 
that all positive integrable functions that solve Equa- 
tion 9 have any partial derivative at any point in their 
d ~ m a i n . ~  

The Binary Solution 

We shall now find all positive integrable solutions of 
Eq. 9 when k = n = 2. This derivation is different from 
the general derivation which is given in the following 
sections, however, the basic method of repeatedly dif- 
ferentiating the functional equation and subsequently 
solving the resulting differential equations is similar. 

When n = k = 2, the functional equation can be writ- 
ten as follows: 

Yz ~ ( 1 -  2) ) (15) fo(y)g1 (z)gz(w) = go(x) f1(-) x f 2 (  l - x  

where 
x = y z + ( l - y ) w  (16) 

Let 
d 

f:(t) = - In fi (t) 
dt (17) 

and 
d 

g: (t) = - In gi (t) 
dt (18) 

Taking the logarithm and then a derivative once wrt 
y, once wrt z and once wrt w of Eq. 15 yields the 
following three equations, 

( 1  - ( 1  - Y ( 1  - ) 
(21) (1 - x)2 l - x  

3Note that, by definition, a pdf does not include a delta 
function. Otherwise it is called a generalized pdf (gpdf, 
[De70]). An integral of a gpdf need not be continuous. 
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Solving f: (5) and fi(e) from Eqs. 20 and 21 where b is an arbitrary constant and is the 
yields, homogeneous solution. Thus, 

- Z)&(z) - ~ ( 1  - Z)&(X) + (1 - w)9!2(~)(22) where a and P are arbitrary constants defined by cu = 
b - f and p = -(b + y). Hence, using a /w  dw = 

~ ( 1  - Y)(W - 4 & Y ( l  - 2)) = zj;(z) In wa, we get g2(w) = cwa(l - w)P where c is a third 
(1 - x ) ~  1 - x arbitrary constant. 

- yzj; (x) + wj&(w) - (1 - y) w&(x) (23) From Eq. 27 we get , 

Now plugging Eqs. 22 and 23 into Eq. 19 and collecting 
all the terms involving j; (x) , gi (z) , j; (w ) and f~ (y) , 
yields, 

where 

Taking a derivative wrt z of Eq. 24 yields, 

C l  Y (1 - 24g: (2) + z(1 - Z)~:'(Z) = - + yf; (y) 
1 -Y  

Hence both sides are equal to  a constant, say c2. Con- 
sequently, 

and 
a' p' 

gi(z) = - - 
1 - z 

Consequently, fo(y), gl(z) and g2(w) all have the 
Dirichlet functional form and each function depends 
on three constants. Due to the symmetric representa- 
tion of Eq. 9 given by Eq. 12, we conclude that go, f l ,  

and f2  are Dirichlet as well. 
h,(Y, 2, w)&(x) + Y ~ ( Y ,  2 1  w)&'(x) = (1 - 24g; (2) 

+ 1 - z ) )  + 1 - y ) ( y )  (25) Preliminary Lemmas 

where h, is the partial derivative of h wrt z, given by, We now provide several lemmas that are needed for 
the derivation of the general solution of Eq. 9. 

h,(y, z, w) = -2y(l-  Y)(W - z) + ~ ( 1 -  22) . . 
Lemma 3 The general solution of the following par- 

Similarly, taking a derivative wrt w of Eq. 24 yields, tial diflerential for f ( x l , .  . , xn)J 

where hw is the partial derivative of h wrt w,  given by, 1 xi f (x l , .  . . , x*) = -h(-, 21,. . . , ~ i - l , ~ i + l , .  . ., 
hW(Y, 2, w)&(x) = 2Y(l - y)(w - 2) + (1 - Y ) ( l  - 2w) xi x j  

Eqs. 25 and 26 together with xj-1, x j+ l , .  . ., xn) (30) 
or, equivalently, by 

(1 - y)hz(y,z,w) - yhw(y,z,w) = 0 1 xi 
yield f ( x l , . .  . , x*) = -g(-, $1,. . ., xi-1, xi+l, .  . . 1  

xj  x j  

(1 - ~ w ) & ( w )  + ~ ( 1  - W ) ~ ; ( W )  = (1 - y)f;(y) - 1  + I  n (31) 
1 -Y where h and g are arbitrary differentiable functions + - [(I - 22)g: (z) + ~ ( 1 -  z)g:'(z)] 

Y 
having n - 1 arguments. 

(27) Proof: Let s = xi and t = G. Thus, f,, = f, + f t ,  

Since w does not appear in the right hand side of this fxj = -$ ft .  Hence, after a change of variables, the 
equation, we get, differential equation becomes 

where cl is an arbitrary constant. Eq. 28 is a first and therefore, 
order linear differential equation the general solution 
of which is given by, 

1 
f = -h ( t l x l1 . .  ., Xi-1 ,  Xi+l,. . . ,Xj-l ,Xj+l, .  . .,Xn) 

S 

b CI 1 - 2w - - By changing the roles of xi and x j  in this derivation, 
"(") = w(1-w) 2 w(1-w) we get the other form of f .  



A Characterization of the Dirichlet Distribution 203 

Lemma 4 The general solution of the following par- 
tial differential equation for f ( X I ,  . . . , x,), 

is given by 

where h is an arbitrary differentiable function having 
n - 1 arguments. 

Proof: Let s = xi + x j  and t = xi - xj. Thus, f,, = 
fs+ ft , fsj = fJ- ft . Hence, after a change of variables, 
the differential equation becomes 

a P 
ft=-+- 

s + t  s - t  

Integrating wrt t and changing back to the original 
variables yields the desired solution. 17 

Lemma 5 Let f (x l ,  . . . , x,) be a twice-differentiable 
function. If for all 1 5 i < j 5 n, 

f (21,. . . , x,) = a; In X j  + a j  In x j  + fjj(x, + xj ,  x i , .  . . , 
xi - l ,x i+ l , . .  . ,xj- l ,Xj+l , .  . . , % )  

where fij are arbitrary twice differentiable functions 
having n - 1 arguments, then 

where g is an arbitrary twice-differentiable function. 

Proof: We shall prove the following stronger claim. 
For every 2 5 1 5 n, and for every permutation of the 
indices of x l , .  . . , x,, 

\ I 

where hl is an arbitrary twice differentiable function. 
The function hl depends on the permutation, although 
this fact is not reflected in our notation. The base case 
1 = 2 is assumed by the lemma and the case 1 = n is 
needed to  be proven. 

By the induction hypothesis we assume Eq. 35 and for 
the permutation 

we also assume (by the induction hypothesis), 

Let x = ~ f : :  xi, c; = bi - a; and T = (x1+2,. . . , x,). 
From Eqs. 35 and 36 we get, 

hl (XI + x, xr+l, 5) = gl ( X I ,  x[+i + 2, F)+ 
1-1 x c; ln xi - al in XI  + bl+l in xl+i (37) 
i=l 

Set xi = 1/2(1- I ) ,  i = 1,. . . , l  - 1. Thus, x = 112 
and Eq. 37 yields, 

h l ( ~ 1  + 112, ~ l + l ,  F) = g1 ( X l ,  Xl+l + 112, T)+ 
1-1 z ci ln(1/2(1 - 1)) - a1 in xi + b1+1 in xl+l (38) 
i= l  

Plugging Eq. 38 into Eq. 37 and letting 

& ( X I ,  xr+i + x ,5 )  g l ( ~ 1 ,  xl+i + x,Z) - (39) 

yields, 

By taking a derivative wrt x j ,  1 5 j 5 1 - 1 of Eq. 40 
we get, 

where the indices 1 and 2 indicate the argument of 
wrt which a derivative is taken. Similarly by taking 
the derivatives wrt XI we get, 

Consequently, 

we now show that cj = 0. If 1 > 2, then set j = jl and 
j = jz, 1 5 jl < j2 5 I - 1, in Eq. 43 and subtract the 
two equations. Consequently, cj,/x., = cj,/xj, and 
therefore q, = cj, = 0. If 1 = 2, t i en ,  x = 21 and 
Eq. 43 becomes 

Let u = x1 + 23, w = x1 - 23 and rewrite the last 
equation, 

Since the left hand side is not a function of w we have 
C1 = 0. 

Now let s = XI + (x + ~ r + ~ ) ,  t = XI  - (x + XI+I)  and 
rewrite the differential equation (Eq. 43) by chang~ng 
variables to s, t and f. Since cj = 0, we get, 
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Thus, il (s, t ,  T )  = i(s,  I) where i is a function of just s 
and I. Consequently, by switching back to the original 
variables, we get, 

1+1 1+1 Similarly, by setting i = il and i = i2, 1 < i l  < i2 < 
f . . . , 'n) = C 'i ln xi + i(C xl+21. . ~ n )  k-1 in Eq. 52, subtracting the resulting two equations, 

i=l i=l 
(47) 

and dividing by yn, we get, 
\ - ' I  

Since this equation can be derived for any permutation 1 
of the indices of xi, the induction is completed. - [sn(Zn)il - gn (Zn)ia] = go(X)i1 - go(X)i,+ (53) 

Yn 
n-1 

5 The General Solution C [fia(wia), ZialYl - fil (Wl )I  zil1yl 
1=1 

We now solve Eq. 9 for any n and k. First we assume 
both n and k are strictly greater than 2. Subtracting Eq. 53 from Eq. 51 and setting j = jl, 

yields, 
We use the following notations: 

a 
f i ( t l , . . . , t n - l ) . -  -lnfi(t  l , . . . , t n - l )  where 1 < il < i2 < k - 1,l < jl < n - 1. 

' - ati 
a a Now we take a derivative wrt ziljl of Eq. 54 and obtain, 

fi(t1,.  . . ,tn-1)'. - -- lnfi(t1,.  . . ,in-1) *' - at i  ati 

Also we use the following notations: 
1 Y j  1 

- [sjl(Zjl)ilil - gjl(Zj1)iaill = --fil ( W l ) j l  (55) 
yj I xi2, 

X =  (xl , . . . ,xk- l ) ,  j = ( I  , - 1 , )  (49) n-1 

wi= (F, .. . ,  zi ,n-lYn-1 1 Zi l lYl  Y =  ( Y I ~ . . . , Y ~ - ~ ) ~  2, + & fil (wil)j1l [--I + &fil (Wi1)jljl 
xi1 1=1 xi2, 

For example, gj  (Zj) stands for gj  (zl j, . . . , zk- l,j). 
Similarly, we take a derivative wrt ziln of Eq. 54 and 

By taking the logarithm and then a derivative wrt zij obtain, 
(1 < i 5 k -  1 , l  < j < n -  1) of Eq. 9, we get, 

1 
n-1 -- [sn(Zn)ilil - gn(Zn)iailI = -Infh (Wl )jl+ ""' + I f i ( ~ i ) j  + (50) g j ( Z j ) i = ~ j [ ~ f i ( W i ) l [ - ~ ]  [=I 

zi ] Yn n-1 4 
Zil lYl  

n-1 * c fil ( ~ 1  ) j l l  (56) 
fk(wk)l j [,=, [y] - &fk(Wkl3] + ~ j g ~ ( X ) i  xil 1=1 

Eqs. 55 and 56 yield, 

By setting i = il and i = iz ,  1 5 il < i2 < k-1 (k 3 3) 
in Eq. 50, subtracting the resulting two equations, and 
dividing by yj , we get, 

n- l  
zial Yl ZillYl 

[ f i a ( ~ , ) l  - f i l ( ~ 1 ) ~  

1=1 $1 

Taking now the logarithm and then a derivative wrt 
zjn (1 < i < k - 1) of Eq. 9 yields, 

n-l  

gn(Zn)i = yngo(X)i + yn [ C f i ( ~ i ) l  [y]]+ - 

Now, we take a derivative wrt zilja of Eq. 54 where 
1 < jz < n - 1, j2 # jl (n 2 3), and obtain, 

Eqs. 56 and 58 yield ( j l  # jz), 
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Putting Eqs. 57 and 59 into Eq. 58 and recalling (from 
Eq. 10) that 

we get, 

Similarly, we derive an analogue to Eq. 55 by taking 
a derivative wrt z;,j1 (instead of wrt ziljl) of Eq. 54, 
follow the same steps up to Eq. 60, and get, 

Plugging Eqs. 60 and 61 into Eq. 54 and collecting 
all terms involving y, in one side and all terms not 
involving yn on the other side implies that each side is 
equal to a constant, say c, namely, 

where 1 < j < n. 

This equation holds for every value of yj and therefore 
c = 0. Thus we obtain, 

where again j. is an arbitrary function having one ar- 
gument less than gj.  Similarly, since f; and gj play a 
symmetric role in Eq. 9 as shown by Eq. 12 and hence 
have the same form, we get 

where Wjlja,i stands for 

Z i , j a - l Y j a - l  7 zi,ja+lYja+l 
I " ' ,  

xi xi -1 xi 

or also, we have, 

Now, by setting j = jl and j = j2 in Eq. 54 and 
subtracting the resulting equations, we get, 

Plugging Eqs. 65 through 68 into Eq. 69 yields, 

[gj(zj)il - gj(zj)io] zilj [gj(zj)iiii - !lj(zj)iaiil Note that the variables in Zil;,,jl do not appear else- 
+ .iaj [gj(Zj)ilia - gj(Zj);aia] = 0 (63) where in this equation. Therefore, Gj, is only a func- - 

tion of its first argument. Similarly, jj,, fil and fi, 

are only functions of their first argument. Thus Eq. 70 
Let h(Zj) = gj(Zj)il - gj(Zj)ia. Thus Eq. 63 can be can be rewritten as follows, written as follows, 

Lemma 3 provides the general solution for h and thus, 

1 zilj 
h (z . )  3 = gj  (zj)il - gj  (zj)ia = -jj(-> zilia,j) 

zilj zi2j Let, x = ziljlyjl, Y = ~i, j ,yj , ,  z = ~ i ~ j , y j ~ ,  and w = 
(65) ziaj,yja in Eq. 71. Then, 

where Zjlia,j stands for 
1 -  x = x  1 z - y  

( z l j ~ . .  . ,zi1-l,j, z i l+ l , j~ .  . . ~ z i ~ - l , j ~ z i ~ + l , j , .  . . 1 2 k - 1 , j )  - X j 1  - f 1  = - W [ j  ] (72) 

and where jj is an arbitrary function having one ar- By taking a derivative wrt of Eq, 72, we get, 
gument less than gj,  or also by Lemma 3, 
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Setting y = w, we see that &(t) = ,Bjl and Cjl(t) = 
pj!t + aj, where aj, and ,Bjl are constants. Plugging 
thls result into Eq. 65 yields, 

where 1 5 il < i2 < k - 1. 

Eq. 74 is a first-order partial differential equation the 
general solution of which is given by Lemma 4. Con- 
sequently, due to Eq. 48, we get, 

Now due to Lemma 5, we have, 

Similarly, 

which is obtained by repeating the derivation starting 
at Eq. 12 rather then at  Eq. 9. Note that we have al- 
most derived the Dirichlet functional form. It remains 
to derive the form of the functions Fj and Gj. 

In Eq. 9 let z l .  - zzj = . . . = zk. for 1 < j < n. Thus, 
according to dC10, zjj = xi. donsequently, we get, 

k 

g0(~11...,~k-l)nfi(~l,...,~n-l) (78) 
i=l 

Eqs. 9 and 78 yield, 

Plugging Eqs. 76 and 77 into Eq. 79, we get, 

Thus, using . ~ k  j = 1 - ~f:: Zi j  (Eq. 10)) 

where for 1 < i < k - 1 and 1 < j < n - 1, cij = 
aij - Pij, 

and where Fk(t) = Fk(t) and Gn(t) = Gn(t).  We will 
show that Fi(t), i = 1 , .  . . , k - 1, are constants. Con- 
sequently, due to Eq. 77, fi has a Dirichlet functional 
form. That the function fk also has a Dirichlet func- 
tional form can be obtained by choosing z l j  as a de- 
pendent variable defined by z l j  = 1 - ~ t = ~  zij instead 
of zkj as defined by Eq. 10 and repeating the same 
arguments. By symmetric arguments each gj  also has 
a Dirichlet functional form. 

Let yj = i, for all j, 1 < j < n and zjj = for all i 
and j, 1 < i < k, 1 < j < n - 1. Hence, the only free 
variables remaining in Eq. 81 are zjn where 1 < i 5 k- 

n-1 1. Note that X; = C;=, zijyj = + iz,,, 1 < i _< 
k - 1, and so Gj ( ~ f z ;  xi) is a function of ~ 4 ~ 1 '  zi,. 
Also Gj(~f:; zij) is a constant for 1 < j < n - 1 
and a function of ~fz1'  zin for j = n. Consequently, 
Eq. 81 becomes, 

where c = n-' kn  , d = 1 and ai = Cyill cij. Note n 

zin and so the k-th term on the 
Et. 81 is absorbed, along with some 

constants, into the definition o f f  in Eq. 82. 

Let ti = L. 
c+dt.., ' zin = y. Taking the logarithm 

of Eq. 82, we get, 

Taking a derivative wrt ti , ,  1 < il < k - 1, we get, 

Thus, f'(j C::; y) must be a constant. Hence, by 
integrating Eq. 84, 

where K is a constant not depending on i. 

To complete the derivation we substitute Eq. 85 into 
Eq. 81, let yj = t, for 1 5 j < n and zjj =,i ex- 
cept zil, 1 < i < k - 1 which remain free variables. 
Consequently, we get 
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where wo = 9. Therefore, K = 0, a; = 0, and Fi is 
a constant as claimed. 

Thus, 

We now comment on how the derivation changes when 
n = 2 and k > 3. The case n 2 3 and k = 2 follows as 
well due to the symmetric functional equation (Equa- 
tion 12). 

Note that up to Eq. 57 the derivation is valid when 
n = 2. Furthermore, note that the sum in Eq. 56 
consists now of one term where 1 = jl = 1. Thus, 
Eq. 56 and Eq. 57 yield, using xi = gjlyjl + zinyn 
(n=2, jl = 1), 

Similarly, 

which is obtained by taking a derivative wrt z;,j! of 
Eq. 54 (instead of wrt ziljl) and repeating the deriva- 
tion up to Eq. 57. 

Plugging Eqs. 88 and 89 into Eq. 54 and collecting 
all terms involving yn in one side and all terms not 
involving yn on the other side implies that each side 
is equal to a constant, say c, namely, we obtain the 
partial differential equation for gj(Zj), 1 5 j 5 n, 
given by Eq. 62. Consequently, as given by Eq. 65 and 
because n = 2, 

and, 

Plugging Eqs. 90 and 93 into Eq. 54 yields, 

This equation parallels Eq. 71 where ( j 2  is replaced by 
n) and can be solved in the same way. Thus Eq. 76 is 
obtained. Eq. 77, on the other hand, needs no proof 
when n = 2 because an arbitrary function f (x) defined 
on (0 , l )  can always be written as f (x) = xag(x) where 
g(x) = X - ~ ~ ( X ) .  The rest of the derivation follows 
closely the previous section. 

The Joint Distribution 

We have so far shown that,  under the assumptions 
made by Theorem 2, fI (Or.) and fJli(8Jli) are Dirich- 
let. Similarly, fJ(B. J) and fIlj (BIlj) have been shown 
to be Dirichlet as well. We now show that if f r ,  fJli, 
f J and fIl are all Dirichlet, then the joint distribution 
fu ({Ojj)) must also be a Dirichlet. 

We can write, 

But ~ I J ( O I . ,  OJll,. . . , eJlk) can be expressed using fJI 
by two applications of the Jacobian given by Eq. 3. 
Thus we get, 

1 r ~ j a  (91) where 0.j = xi Bi,Bjli. Since fIJ can be expressed, 
gja(zja)il - gja(zja)ia = -gja(-) 

Zia ja  Z ~ x l a  due to local and global independence, as a product of 
f r ,  fJI1, .  . . , fIln each of which has been shown to be 

~ l ~ ~ ,  when = 2, we have xi = zijlyjl + and a Dirichlet, it follows from Eq. 95 that the exponent 
hence, coefficients for O . j ,  1 5 j 5 n,  must vanish. Conse- 

quently, fu ({Oij)), which is obtained from Eq. 95 by 
multiplying with {nf= Or-1}-' and using the rela- 
tionship Oj j  = OjliOj . ,  is bsichlet.  


