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Abstract 

We show that the only parameter prior for 
complete Gaussian DAG models that satis- 
fies global parameter independence, complete 
model equivalence, and some weak regular- 
ity assumptions, is the normal-Wishart dis- 
tribution. Our analysis is based on the fol- 
lowing new characterization of the Wishart 
distribution: let W be an n x n,  n 2 3, 
positive-definite symmetric matrix of ran- 
dom variables and f ( W )  be a pdf of W. 
Then, f(W) is a Wishart distribution if and 
only if Wll - W~~W&'W;, is independent 
of {Wlz, Wz2) for every block partitioning 
Wll, W12, W;,, W22 of W.  Similar character- 
izations of the normal and normal-Wishart 
distributions are provided as well. We also 
show how to construct a prior for every DAG 
model over X from the prior of a single re- 
gression model. 

1 Introduction 

Directed Acyclic Graphical (DAG) models have in- 
creasing number of applications in Statistics (Spiegel- 
halter, Dawid, Lauritzen, and Cowell, 1993) as well as 
in Decision Analysis and Artificial Intelligence (Heck- 
erman, Mamdani, Wellman, 1995b; Howard and Math- 
eson, 1981; Pearl, 1988). A DAG model m = (s ,Fs)  
for a set of variables X = {Xi , .  . . , X n )  each associ- 
ated with a set of possible values Di, respectively, is a 
set of joint probability distributions for Dl x . . . x Dn 
specified via two components: a structure s and a set 
of local distribution families Fs. The structure s for 
X is a directed graph with no directed cycles (i.e., 
a Directed Acyclic Graph) having for every variable 
Xi in X a node labeled Xi with parents labeled by 
P a r .  The structure s represents the set of condi- 
tional independence assertions, and only these condi- 
tional independence assertions, which are implied by 
a factorization of a joint distribution for X given by 
p(x) = ny=, p(xi(paT),  where x is a value for X (an 
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n-tuple) and xi is a value for Xi. When xi has no 
incoming arcs in m (no parents), p(xi(paT) stands for 
p(xi). The local distributions are the n conditional and 
marginal probability distributions that constitute the 
factorization of p(x). Each such distribution belongs 
to the specified family of allowable probability distri- 
butions Fs. A DAG model is often called a Bayesian 
network, although the later name sometimes refers to 
a specific joint probability distribution that factorizes 
according to a DAG, and not, as we mean herein, a set 
of joint distributions each factorizing acccording to the 
same DAG. A DAG model is complete if it has no miss- 
ing arcs. Note that any two complete DAG models for 
X encode the same assertions of conditional indepen- 
dence, namely none. 

In this paper, we assume that each local distribution 
is selected from a family Fs wh'ich depends on a finite 
set of parameters Om E Om (a parametric family). The 
parameters for a local distribution is a set of real num- 
bers that completely determine the functional form of 
p(xilpay) when xi has parents and of p(xi) when xi 
has no parents. We denote by mh the model hypothe- 
sis that the true joint probability distribution of X is 
perfectly represented by a structure s of a DAG model 
m with local distributions from Fs, namely, that the 
joint probability distribution satisfies only the condi- 
tional independence assertions implied by this factor- 
ization and none other. Consequently, the true joint 
distribution for a DAG model m is given by, 

where y = {xi)XiEY denotes a value of Y X 
and 01,. . .On are subsets of 0,. Whereas in a gen- 
eral formulation of DAG models, the subsets {Oi)~.l 
could possibly overlap allowing several local distribu- 
tion to have common parameters, in this paper, we 
shall shortly exclude this possibility (Assumption 5). 
Note that Om denotes the union of 01,. . . ,On for a DAG 
model m. 

We consider the Bayesian approach when the param- 
eters Om and the model hypothesis mh are uncertain 
but the parametric families are known. Given data 
d = {xl , . . . , xm ) , a random sample from p(xJOm, mh) 
where Om and mh are the true parameters and model 
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hypothesis, respectively, we can compute the posterior ferent distributions. In Section 4, we compare these 
~ r o b a b i l i t ~  of a model hypothesis mh using characterizations to a recent characterization of the 

Dirichlet distribution (Geiger and Heckerman, 1997; 
J k a i  , 1998) and conjecture that the later character- 
ization uses a redundant assumption (local parame- 

(2) ter inde~endencebtha t  is. global ~arameter  inde~en- 

c ~ ( m ~ ) ) / p ( d l @ ~ , m ~ )  p(Omlmh) )ern 
dence may also characteriz'eihe ~Gichle t  distribution. 
The Dirichlet, normal, Wishart, and normal-Wishart 
distributions are the conjugate distributions for the 
standard multivariate exio<ential families. 

where c is a normalization constant. We can then se- 
lect a DAG model that has a high posterior probability 
or average several good models for prediction. 2 Priors for DAG models 
The problem of selecting an appropriate DAG model, 
or sets of DAG models, given data, posses a serious 
computational challenge, because the number of DAG 
models grows faster than exponential in n. Meth- 
ods for searching through the space of model struc- 
tures are discussed (e.g.) by Cooper and Herskovits 
(1992), Heckerman, Geiger, and Chickering (1995a), 
and Friedman and Goldszmidt (1997). 

From a statistical viewpoint, an important question 
which needs to  be addressed is how to  specify the quan- 
tities p(mh), p(dlOm, mh),  p(Omlmh), needed for evalu- 
ating p(mhld) for every DAG model m that could con- 
ceivably be considered by a search algorithm. Buntine 
(1994) and Heckerman et al. (1995a) discuss methods 
for specifying the priors p(mh) via a small number of 
direct assessments. Geiger and Heckerman (1994) and 
Heckerman and Geiger (1995) develop practical meth- 
ods for assigning parameter priors p(B, lmh) to every 
candidate DAG model m via a small number of direct 
assessments. Another relevant paper is by Dawid and 
Lauritzen (1993) who discuss the notion of hyper and 
meta Markov laws. 

The contributions of this paper are twofold: A 
methodology for specifying parameter priors for Gau- 
sian DAG models using a prior for a single regression 
model (Section 2). An analysis of complete Gaus- 
sian DAG models which shows that the only parame- 

- -. ter prior that satisfies our assumptions is the normal- 
Wishart distribution (Section 3). 

The analysis is based on the following new character- 
ization of the Wishart, normal, and normal-Wishart 
distributions. 

Theorem Let W be an n x n,  n 2 3, positive-definite 
symmetric matrix of real random variables such that 
no entry in W is zero, p be a an n-dimensional vector 
of random variables, fw(W) be a pdf of W, f,(p) be 
a pdf of P ,  and f , , w ( ~ ,  W)  be a pdf of {P, W). Then, 
fw(W) is a Wishart distribution, f,(p) is a nor- 
mal distribution, and f,,w(p, W) as a normal- Wishart 
distribution if and only if global parameter indepen- 
dence holds for unknown W,  unknown p, or unknown 
{p, W), respectively. 

The assumption of global parameter independence is 
expressed differently for each of the three cases treated 
by this theorem and the proof follows from Theo- 
rems 6, 8 and 9, respectively, proven in Section 3. It 
should be noted that a single principle, global param- 
eter independence, is used to characterize three dif- 

In this section we provide a novel presentation of 
our previous results in (Geiger and Heckerman, 1994; 
Heckerman and Geiger, 1995). We have sharpened 
the assumptions involved in learning DAG models with 
no hidden variables from complete data. As a result, 
we show that a prior for one regression model dictates, 
under our assumptions, the prior for all Gaussian DAG 
models over the same variables. Our new presenta- 
tion, which uses matrix notation for expressing inde- 
pendence of parameters of Gaussian DAG models, en- 
ables us to prove the characterization theorems in the 
next section. 

This section is organized as follows: A methodology for 
specifying parameter priors for many structures using 
a few direct assessments (Section 2.1). A formula that 
computes the marginal likelihood for every dag model 
(Section 2.2). A specialization of this formula to an 
efficient computation for Gaussian DAG models (Sec- 
tion 2.3). 

2.1 T h e  Construct ion of Pa rame te r  Pr iors  

We start by presenting a set of assumptions that sim- 
plify the assessment of parameter priors and a method 
of assessing these priors. The assumptions are as fol- 
lows: 

Assumption 1 (Complete model  equivalence) 
Let mi = (sl,.F81) be a complete DAG model for a 
set of variables X. The family F s 2  o j  every complete 
DAG model mz = (sz,Fsz) for X is such that mi  and 
mz represent the same set of joint probability distribu- 
tions. 

We explain this assumption by providing an exam- 
ple where it fails. Suppose the set of variables X = 
{Xi, Xz, X3) consists of three variables each with pos- 
sible values {xi , f i ) ,  respectively, and s l  is the com- 
plete structure with arcs X1 + Xz, X1 + X3, .and 
Xz -t X3. Suppose further, that the local distr~bu- 
tions FS1 of model ml are restricted to  the sigmoid 
function 

where O1 = {al), Bz = {az, biz), and 03 = 
{a3, b13, b23). 

Consider now a second complete model m2 for X = 
{Xi, X2, X3) whose structure consists of the arcs 
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X1 -t Xz, X1 -t Xt, and X3 + X2. Assumption 1 
asserts that the families of local distributions for ml 
and m2 are such that the set of joint distributions for 
X represented by these two complete models is the 
same. In this example, however, if we specify the local 
families for m2 by also restricting them to be sigmoid 
functions, the two models will represent different sets 
of joint distributions over {XI, X2, X3). Hence, As- 
sumption 1 will be violated. Using Bayes rule one can 
always determine a set of local distribution families 
that will satisfy Assumption 1, however, their func- 
tional form will usually involve an integral (and will 
often violate Assumption 5 below). An important ex- 
ception is discussed in Section 2.3. 

Our definition of mh, that the true joint pdf of a set 
of variables X is perfectly represented by m, and As- 
sumption 1, which says that two complete models rep- 
resent the same set of joint pdfs for X, imply that 
for two complete models mf = mi.  This is a strong 
assumption. It implies that p(Om2lm~) = p(Om21mt) 
because two complete models represent the same set 
of distributions. It also implies p(d1mf) = p(dlm5) 
which says that the marginal likelihood for two com- 
plete DAG models is the same for every data set, or 
equivalently, that complete DAG models cannot be 
distinguished by data. Obviousely, in the example 
with the sigmoid functions, the two models can be dis- 
tinguished by data because the do not represent the 
same set of joint distributions. Y 

Assumption 2 (Regularity) For every two com- 
plete DAG models ml and mz for X there exists a 
one-to-one mapping f12 between the parameters Oml 
of mi and the parameters Om2 of m2 such that the 
likelihoods satisfy p(xlOml, mf) = p(x10m2, m$) where 
O,2 = f l ,z (Oml) .  The Jacobian laOml/aOm21 exists 
and is non-zero for all values of @,I. 

Assumption 2 implies p(Om21mF) = (&I p(Omilmf) 
, - - , 

where Om2 = fl,z(Oml). Furthermore, due to Assump- 
tion 1, p(Om21rni) = p(Om21m:), and thus 

'A technical point worth mentioning here is our use of 
the term variable and its relationship to the standard defi- 
nition of a random variable. A wntinuous random variable 
X, according to most 
X : R -i R such that 
field of subsets of R 
s ace (R, A, P )  and 1 discrete random 
D is a discrete set such that {wlX(w) = xi) E A for every 
xi E D where A is a u-field and R is a sample space of 
a probability space (R A, P). We use the term variable, 
as common to much oi the literature on DAG models to 
mean a function Xi : A -t D,, where A is a u-field of 
subsets of R, parallel to the usual definition of a random 
variable, but without fixing a s ecific probability measure 
P .  A model m for a set of variailes X, (and a DAG model 
in particular), is simply a set of probability measures on 
the Cartesian prqduct x ,Di. Once a particular probability 
measure from m IS picked, a variable in our sense becomes 
a random variable in the usual sense. 

Assumption 3 (Likelihood Modularity) For ev- 
ery two DAG models ml and m2 for X such that Xi 
has the same parents in  ml and m2, the local distri- 
butions for xi in both models are the same, namely, 
p(xilpar, Oi, m:) = p(xilpay, Oi,  mi)  for all Xi E X .  

Assumption 4 (Prior Modularity) For every two 
DAG models mi and m2 for X such that Xi has the 
same parents in ml and m2, p(Oilmf) = p(Oilm$). 

Assumption 5 (Global Parameter Independence) 
For every DAG model m for X ,  p(Omlmh) = 
ny=l p(Oilmh). 

The likelihood and prior modularity assumptions have 
been used implicitly in the work of (e.g.) Cooper and 
Herskovits (1992), Spiegelhalter et al. 1993), and 
Buntine (1994). Heckerman et al. (1995a \ made As- 
sumption 4 explicit in the context of discrete variables 
under the name parameter modularity. Spiegelhalter 
and Lauritzen (1990) introduced Assumption 5 in the 
context of DAG models under the name global inde- 
pendence. Assumption 5 excludes the possibility that 
two local distributions would share a common param- 
eter. 

The assumptions we have made lead to  the following 
significant implication: When we specify a parameter 
prior p(Om,lml) for one complete DAG model m,, we 
also implicitly specify a prior p(Omlmh) for any DAG 
model m among the super exponentially many possi- 
ble DAG models. Consequently, we have a framework 
in which a manageable number of direct assessments 
leads to all the priors needed to search the model space. 
In the rest of this section, we explicate how all pararn- 
eter priors are determined by the one elicited prior. In 
Section 2.3, we show how to elicit the one needed prior 
p(OmClm~) under specific distributional assumptions. 

Due to the complete model equivalence and regular- 
ity assumptions, we can compute p(OmClmt) for one 
complete model for X from the prior of another com- 
plete model for X. In so doing, we are merely perform- 
ing coordinate transformations between parameters for 
different variable orderings in the factorization of the 
joint likelihood (Eq. 3). Thus by specifying parame- 
ter prior for one complete model, we have implicitly 
specified a prior for every complete model. 

It remains to  examine how the prior p(Omlmh) is com- 
puted for an incomplete DAG model m for X. Due to  
global parameter independence we have p(Om)mh) = ny=, p(Oilmh) and therefore it suffices to  examine each 
of the n terms separately. To compute p(Oi(mh), 
we identify a complete DAG model mci such that 
Pay = P a y ' .  The prior p(Omcilm~i) is obtained 
from p(Omclmh), as we have shown for every pair of 
complete D A ~  models. Now, global parameter in- 
dependence states that p(OmClm~,) can be written as 
a product ~ ~ = l p ( O i ( m ~ i ) ,  and therefore, p(Oi(m:i) is 
available. Finally, due to prior modularity p(Oilmh) is 
equal to  p(Oilrnti). 

The following theorem summarizes this discussion. 
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Theorem 1 Given Assumptions 1 through 5, the pa- 
rameter prior p(8,)mh) for every DAG model m is 
determined by a specified parameter prior p(8,,lm:) 
for an arbitrary complete DAG model m,. 

Theorem 1 shows that once we specify the parameter 
prior for one complete DAG model all other priors can 
be generated automatically and need not be specified 
manually. Consequently, together with Eq. 2 and due 
to the fact that also likelihoods can be generated au- 
tomatically in a similar fashion, we have a manageable 
methodology to automate the computation of p(dlmh) 
for any DAG model of X which is being considered by a 
search algorithm as a candidate model. Next we show 
how this computation can be done implicitly without 
actually computing the priors and likelihoods. 

2.2 Computat ion of the Marginal Likelihood 
for Complete D a t a  

For a given X, consider a DAG model m and a com- 
~ l e t e  random sample d. Assuming global parameter in- 
dependence, the parameters remain independent given 
complete data. That is, 

In addition, assuming global parameter independence, 
likelihood modularity, and prior modularity, the pa- 
rameters remain modular given complete data. In par- 
ticular, if Xi has the same parents in s l  and s ~ ,  then 

Also, for any Y 2 X, define dY to be the random 
sample d restricted to observations of Y. For ex- 
ample, if X = {Xl,Xz,X3}, Y = { X I , X ~  , and 
d = {xi = {XII, 112, ~ 1 3 ) ~  xz = (121, 3 Z z 9  XZ~)!, then 
we have dY = x l ~ r x ~ ~ ) r { x 2 ~ , x 2 2 ) } .  Let Y be a 
subset of X, an s, be a complete structure for any 

- -. 
j{ 

ordering where the variables in Y come first. Then, as- 
suming global parameter independence and likelihood 
modularity, it is not difficult to show that 

Given these observations, we can compute the 
marginal likelihood as follows. 

Theorem 2 Given any complete DAG model m, for 
X, any DAG model n for X, and any complete mn- 
dom sample d, Assumptions 1 through 5 imply - 

ProoE l+om the rules of probability, we have 

where dl = {xi, .  . . ,xl-I). Using Equations 1 and 4 
to rewrite the first and second terms in the integral, 
respectively, we obtain 

where xi1 is the value of Xi in the 1-th data point. 

Using likelihood modularity and Equation 5, we get 

where s,i is a complete structure with variable order- 
ing Pai ,  Xi followed by the remaining variables. De- 
composing the integral over 8, into integrals over the 
individual parameter sets Bi, and performing the inte- 
grations, we have 

Using Equation 6, we obtain 

By the likelihood modularity, complete model equiv- 
alence, and regularity assumptions, we have that 
p(dlrnfi) = p(dlm:), i = 1,.  . . , n. Consequently, for 
any subset Y of X, we obtain p(dYlrnti) = p(dY Im:) 
by summing over the variables in dXjY. Consequently, 
using Equation 10, we get Equation 7. 

An important feature of the formula for marginal likeli- 
hood (Equation 7), which we now demonstrate, is that 
two DAG models that represent the same assertions 
of conditional independence have the same marginal 
likelihood. We say that two structures for X are in- 
dependence equivalent if they represent the same as- 
sertions of conditional independence. Independence 
equivalence is an equivalence relation, and induces a 
set of equivalence classes over the possible structures 
for X. 

Verma and Pearl (1990) provide a simple characteri- 
zation of independence-equivalent structures using the 
concept of a v-structure. Given a structure s, a v- 
strzlcture in s is an ordered node triple (Xi, X j ,  Xk) 
where s contains the arcs Xi + X .  and X j  t Xk, and 
there is no arc between Xi and 4 in either direction. 
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Verma and Pearl show that two structures for X are 
independence equivalent if and only if they have identi- 
cal edges and identical v-structures. This characteriza- 
tion makes it easy to  identify independence equivalent 
structures. 

An alternative characterization by Chickering (1995) is 
useful for proving our claim that independence equiva- 
lent structures have the same marginal likelihood. An 
arc reversal is a transformation from one structure to  
another, in which a single arc between two nodes is re- 
versed. An arc between two nodes is said to  be covered 
if those two nodes would have the same parents if the 
arc were removed. 

T h e o r e m  3 (Chicker ing ,  1995) 
Two structures for X are independence equivalent i f  
and only i f  there exists a set of covered arc reversals 
that transform one structure into the other. 

A proof of this theorem can also be found in (Hecker- 
man et al., 1995a). We are ready to prove our claim. 

T h e o r e m  4 Given Assumptions 1 through 5, every 
two independence equivalent DAG models have the 
same marginal likelihood. 

P r o o f :  Theorem 3 implies that we can restrict the 
proof to  two DAG models that differ by a single cov- 
ered arc. Say the arc is between X i  and X j  and that 
the joint parents of X i  and X j  are denoted by a. For 
these two models, Equation 7 differs only in terms i 
and j. For both models the product of these terms is 
p ( d n U { X i ~ X j }  I m ! ) / p ( d n l m ~ ) .  

The conclusions of Theorems 2 and 4 are not justified 
when our assumptions are violated. In the example of 
the sigmoid functions, discussed in the previous sub- 
section, the structures sl and s~ differ by the reversal 
of a covered arc between Xz and X g ,  but, given that all 
local distribution families are sigmoid, there are cer- 
tain joint likelihoods that can be represented by one 
structure, but not the other, and so their marginal 
likelihood is different. 

2.3 G a u s s i a n  Direc ted  Acyc l i c  Graphical  
M o d e l s  

We now apply the methodology of previous sections to 
Gaussian DAG models. A Gaussian DAG model is a 
DAG model as defined by Eq 1, where each variable 
X i  E X is continuous, and each local likelihood is the 
linear regression model 

where N ( x i ( p ,  7) is a normal distribution with mean 
p and precision T > 0.  Given this form, a missing 
arc from X j  to Xi implies that bii = 0 in the com- 
plete DAG model. The local parameters are given 
by Oi = (mi, bi,v,), where bi is the column vector 
( h i , .  . . j bi-1,i). 
For Gaussian DAG models, the joint likelihood 
p(xlOm,mh) obtained from Eqs 1 and 11 is an n- 
dimensional multivariate normal distribution with 

mean p and symmetric positive definite precision ma- 
trix W ,  

p(xlOm,mh) = n p ( x i l p a ? , 0 i , m h )  = N ( x J p ,  W ) .  

For a complete model m, with ordering ( X i , .  . . , X,) 
there is a one-to-one mapping between Om, = Uy=l Oi 
where Oi = (mi, bi, vi)  and { p ,  W }  which has a 
nowhere singular Jacobian matrix. Consequently, as- 
signing a prior for the parameters of one complete 
model induces a parameter prior, via the change of 
variables formula, for { p ,  W )  and in turn, induces a 
parameter prior for every complete model. Any such 
induced parameter prior must satisfy, according to  
our assumptions, global parameter independence. Not 
many prior distributions satisfy such a requirement. In 
fact, in the next section we show that the parameter 
prior p(p, W(ma) must be a normal-Wishart distribu- 
tion. 

For now we proceed by simply choosing p(p, W(m2) 
to be a normal-Wishart distribution. In particular, 
p ( p ( W ,  ml)  is a multivariate-normal distribution with 
mean u and precision matrix a,W (a,, > 0);  and 
p(W(m,h) is a Wishart distribution, given by, 

with a degrees of freedom (a  > n - 1)  and a 
definite parametric matrix T and where c ( n , a )  is a 
normalization constant given by 

c(n, = 2"n/znn("-1)/4 [ fir ( a +  1 - i ) ] - l  

i=l 2 

(e.g., DeGroot, 1970, p. 57). 
(13) 

This choise satisfies global parameter independence 
due to the following well known theorem. 

Define a block partitioning {Wil, W I Z ,  W;,, W z z }  of an 
n by n matrix W to be compatible with a partitioning 
p1, pz of an n dimensional vector p, if the indices of the 
rows that correspond to block Wl1 are the same as the 
indices of the terms that constitute p1 and similarly 
for W Z Z  and p2. 

T h e o r e m  5 I f f  ( p ,  W )  is an n dimensional normal- 
Wishart distribution, n > 2, with parameters u,a,, 
a, and T ,  then { p l ,  Wl1  - ~ 1 2  WG' w;,) is indepen- 
dent of {pz - W G ~ W ; Z ~ I ,  W I Z ,  W Z Z )  for every par- 
titioning p1,pz of p where W11,W12, W;,, Wzz is 
a block partitioning of W compatible with the parta- 
tioning p1,pz. Furthermore, the pdf of { p i ,  Wll - 
WIZ W2;' W i 2 }  is normal- Wishart with parameters ul , 
a,,, T l i  - T I Z T G ' T ; ~ ,  and a - n + l  where Tl1,Tiz,  T i z ,  
Tz2 is a compatible block partitioning of T ,  u l ,  uz as a 
compatible partitioning of u ,  and 1 is the size of the 
vector ul . 

The proof of Theorem 5 requires a change of variables 
from ( k w )  to ( P I ,  p2 - W ~ ~ W i 2 p i )  and ( W i i  - 
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W12 w;' w;,, Wlz, Wzz). Press carries out these com- 
putations for the Wishart distribution (1971, p. 117- 
119). Standard changes are needed to obtain the claim 
for the normal-Wishart distribution. 

To see why the independence conditions in Theo- 
rem 5 imply global parameter independence, con- 
sider the partitioning in which the first block con- 
tains the first n - 1 coordinates which correspond to 
XI , .  . . , X,-1 while the second block contains the last 
coordinate which corresponds to  X,,. For this par- 
titioning, b, = -W;'W~~, v, = w;', and m, = 
pz - ~; 'Wi ,p l .  Furthermore, ((w-')~I)-' = W I ~  - 
w12 w;' w j 2  is the precision matrix associated with 
XI , .  . . , X,-1. Consequently, {m,, b,, v,) is indepen- 
dent of {pl, ((W-l)ll)-l). We now recursively re- 
peat this argument with {pl,((W-l)ll)-l} instead 
of {p, W), to obtain global parameter independence. 
The converse, namely that global parameter indepen- 
dence implies the independence conditions in Thec- 
rem 5, is established similarly. 

Our choise of prior implies that the posterior 
p(p, Wld, mf )  is also a normal-Wishart distribution 
(DeGroot, 1970, p. 178). In particular, p(pl W, d, m t )  
is multivariate normal with mean vector v' given by 

and precision matrix (a, + m)W, where Tt, is the 
sample mean of d, and p(Wld, m f )  is a Wishart distri- 
bution with a + m degrees of freedom and parametric 
matrix R given by 

where Sm = Czl (xi - Fm) (xi - Bm)'. From these 
equations, we see that a and a can be thought of as 
equivalent sample sizes &r p and W, respectively. 

According to Theorem 5, if p(p, w l m f )  is a normal- 
Wishart distribution with the parameters given by 
the theorem, then p(py,  ( ( ~ - l ) y y ) - l l m t )  is also a 
normal-Wishart distribution with parameters vy, a,, 
Ty = ((T-l)yy)-l and a' = a - n + 1, where Y is 
a subset of 1 coordinates. Thus, applying standard 
formulas pertaining to t-distributions (e.g., DeGroot, 
1970, p. 179-180), we obtain the terms in Equation 7: 

where Ry = ((RW1)yy)-l is the posterior parametric 
matrix restricted to the Y coordinates. 

We have just shown how to  compute the marginal 
likelihood for Gaussian DAG models given the direct 
assessment of a parameter prior p(p, ~ l m f )  for one 
complete model. The task of assessing a parame- 
ter prior for one complete Gaussian DAG model is 

equivalent, in general, to  assessing priors for the pa- 
rameters of a set of n linear regression models (due 
to  Equation 11). However, to satisfy global param- 
eter independence, the prior for the linear regression 
model for X ,  given X I , .  . . , X,-1 determines the pri- 
ors for the linear coefficients and variances in all the 
linear regression models that define a complete Gaus- 
sian model. In particular, llv, has a one dimensional 
Wishart pdf W(l/v, I a + n - 1,Tz2 - T;~T;'T~~) 
(i.e., a gamma distribution), and b, has a normal pdf 
N(b, I ~ ; ; ' ~ 1 2 , T ~ ~ / v , ) .  Consequently, the degrees of 
freedom a and the parametric matrix T ,  which com- 
pletely specify the Wishart prior distribution, are de- 
termined by the normal-gamma prior for one regres- 
sion model. Kadane et al. (1980) address in detail the 
assessment of such a normal-gamma prior for a lin- 
ear regression model and their method applies herein 
with no needed changes. The relationships between 
this elicited prior and the priors for the other n - 1 
linear regression models can be used to check consis- 
tency of the elicited prior. Finally, a normal prior for 
the means of XI , .  . . , X, is assessed separately and it 
requires only the assessment of a vector of means along 
with an equivalent sample size a,. 

Our method for constructing parameter priors for 
many DAG models from a prior for one regression 
model has recently been applied to  analyses of data 
in the domain of image compression (Thiesson et al., 
1998). Our method also provides a suitable Bayesian 
alternative for many of the examples discussed in 
(Spirtes et al., 1993). 

3 Characterization of Several 
Probability Distributions 

We now characterize the Wishart distribution as the 
only pdf that satisfies global parameter independence 
for an unknown precision matrix W with n 2 3 cc- 
ordinates (Theorem 6 ) .  This theorem is phrased and 
proven in a terminology that relates to known facts 
about the Wishart distribution. We proceed with 
similar characterizations of the normal and normal- 
Wishart distributions (Theorems 8 and 9). 

Theorem 6 Let W be an n x n, n 2 3, positive- 
definite symmetric matrix of random variables and 
f (W) be a pdf of W. Then, KW) is a Wishart dis- 
tribution if and only if Wll - w~~w;~w;, is in- 
dependent of {Wlz, WZ2) for every bloci partitioning 
wl1,wl2,w;2,W22 of w. 
Proof: That Wl1 - W~~W;'W;, is independent of 
{Wlz, Wzz) whenever f (W) is a Wishart distribution 
is a well known fact (Press 1971, p. 117-119). It is also 
expressed by Theorem 5. The other direction is proven 
by induction on n. The base case n = 3 is treated at  
the end. 

The pdf of W can be written in n! orderings. In par- 
ticular, due to the assumed independence conditions, 
we have the following equality: 
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where a subscripted f denotes a pdf. Since n > 3, we 
can divide the indices of W into three non-empty sets 
a, b and c such that b includes at least two indices. We 
now group a and b to form a block and b and c to form 
a block. For each of the two cases, let Wl1 be the block 
consisting of the indices in {a ,  b )  or { b ,  c ) ,  respectively, 
and Wzz be the block consisting of the indices of c or 
a, respectively. By the induction hypothesis, and since 
the independence conditions on W can be shown to 
hold for any block Wl1 of W ,  we conclude that f l (V)  
is a Wishart distribution W(VI a1, T I )  and fz(V) is a 
Wishart distribution W(VI cuz, Tz). Consequently, the 
pdf of the block corresponding to the indices in b is 
a Wishart distribution, and from the two alternative 
ways by which this pdf can be formed, it follows that 
a1 - 11 = az - 1 2 ,  where 1, is the number of indices in 
block i (Press, 1971, Theorem 5.1.4). Thus, 

where cl and cz are normalizing constants, /3 = (al  - 
11 - 1)/2,  W1l.z = W11 - WIZWG'W!~, and W22.1 = 
Wz2 - w;, w;,' ~ 1 2 .  Define 

Fzli(Wzz, W12) = (19) 

c l f i l l ( ~ 2 2 , ~ 1 2 ) ~ ~ W 2 2 ~ @ e ~ f ~ ~ ~ ~ ~ ~ + ~ ~ ( ~ ~ ~ ~ ~ 1 ~ ~ ~ ) ~  

substitute into Equation 18, and obtain, using IWll - 
WIZW;,'W;~IIWZZI = IWI, that F z ~ I ( W Z ~ , W ~ Z )  = 
F112(W11, W I Z ) .  Consequently, F211 and 4 1 2  are 
functions only of Wlz and thus, using Equation 19, 
we obtain 

f (w)  = I W I P ~ ~ ~ { T I W I I + T Z W Z Z } H ( ~  1 2 )  ( 2 1 )  

for some function H. 

To show that f ( W )  is Wishart we must find the form 
of H. Considering the three possible pairs of blocks 
formed with the sets of indices a, b, and c, Equation 21 
can be rewritten as follows. 

f (w)  = ~ W ~ ~ l e t r ~ ~ . . ~ a . + ~ b b ~ b b + ~ c c ~ W W ~ .  ( 2 2 )  

e~t~{TLbW.b+T~,Wac+T~cWbc}~l (wae, wbc) 

f (w)  = ~ W ~ ~ s e t ~ { ~ ~ o ~ a s + ~ b b ~ b b + ~ s s ~ c s } .  P4) 
e z t r { ~ ~ b ~ , b + ~ ~ , ~ a , + ~ ~ b ~ b c }  3(Wab, Wac) 

By setting Wab = Wac = Wbc = 0, we get pl = Pz = 
P 3  and T,i = Sii = Rii, for i = a, b, c. By comparing 
Equations 22 and 23 we obtain 

Each side of this equation must be a function only of 
Wbe We denote this function by Hlz.  Hence, 

and by symmetric arguments, comparing Equations 22 
and 24, 

Thus, H12(Wbc) is proportional to e2tr{(R;=-TL=)Wb=} 
and so f ( W )  is a Wishart distribution, as claimed. 

It remains to examine the case n = 3. We first assume 
n = 2 in which case f ( W )  is not necessarily a Wishart 
distribution. In the full version of this paper (Sub- 
mitted to Annals of Statistics) we show that given the 
independence conditions for two coordinates, f must 
have the form 

f ( W )  = (26) 

where H is an arbitrary function, and that the 
marginal distributions of W11 and Wz2 are one dimen- 
sional Wishart distributions. The proof rests on tech- 
niques from the theory of functional equations (AczB1, 
1966) and results from (JArai , 1986, 1998). A weaker 
proof, under some regularity conditions, can be found 
in (Geiger and Heckerman, 1998). 

We now treat the case n = 3 using these assertions 
about the case n = 2. Starting with Equation 17, 
and proceeding with blocks a, b, c each containing ex- 
actly one coordinate, we get, due to the given inde- 
pendence conditions for two coordinates, that f l  has 
the form given by Equation 26, and that f2  is a one 
dimensional Wishart distribution. Proceeding parallel 
to Equations 18 through 20, we obtain, 

H(alz - b : b ~ / ~ z z ) ~ z ~ l ( ~ z z ,  ~ 1 2 )  = F112(Wll,Wlz) 
(27) 

where ( b l ,  b2)  is the matrix W I 2 ,  a12 is the off-diagonal 
element of W11, a12 - b:bi/W22 is the off diagonal ele- 
ment of Wl1- W ~ Z W , ' W ; ~ ,  and Wzz is a 1 x 1 matrix. 
Note that the right %and side depends on W11 only 
through al2. Let bl and bz be fixed, y = b:b;/WZ2, 
and x = alz. Also let F(t) = Fzll(b:bi/t, ( b l ,  b z ) )  
and G(alz) = Fl12(Wll, ( b l ,  b2 ) ) .  We can now rewrite 
Equation 27 as H(x - y)F(y) = G(x) .  Now set 
z = x -  y ,  andobtain for every y,z  > 0 

the only measurable solution of which for H is H(z)  = 
cebz (e.g., AczB1 , 1966) . 
Substituting this form of H into Equation 26, we see 
that Wl1 has a two dimensional Wishart distribution. 
Recall that Wzz has a one dimensional Wishart distri- 
bution. We can now apply the induction step starting 
form Equation 18 and prove the Theorem for n = 3. 

We now treat the situation when only the means are 
unknown, characterizing the normal distribution. The 
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two dimensional case turns out to be covered by the 
Skitovich-Darmois theorem (e.g., Kagan, L i k ,  and 
Rao (1973)). 

Theorem 7 (Skitovich-Darmois) Let 21 , .  . . , zk be 
andependent random variables and ai,Pi,  1 < i < k ,  
be constant coeficients. If L1 = C aizi is independent 
of Lz  = C P i z i ,  then each z, for which a& f 0 is 
normal. 

The Skitovich-Darmois theorem is used in the proof 
of the base case of our next characterization. Several 
generalizations of the Skitovich-Darmois theorem are 
described in Kagan et al. (1973). 

Theorem 8 Let W be an n x n, n 2 2, positive- 
definite symmetric matrix of real random variables 
such that no entry in W is zero, p be an n-dimensional 
vector of random variables, and f ( p )  be a pdf of p. 
Then, j(p) is an n dimensional normal distribution 
N(plq,  y W )  where y > 0 if and only i f  p1 is indepen- 
dent of pz + ~ ; ~ W ; ~ p 1  for every partitioning p l , ~ ~  
o f p  where w ~ ~ , ~ ~ z ,  Wi2, Wzz is a block partitionrng 
of W compatible with the partitioning p1, pz . 

Proof: The two independence conditions, p1 inde- 
pendent of pz + ~ ; 2 ~ ~ : , p 1  and p2 independent of 
p1 + w ; , ~ W ~ Z ~ Z ,  are equivalent to the following func- 
tional equation 

f ( P I  = f l ( ~ l ) f 2 1 1 ( ~ 2  + W;21W:2~1) (29) 

= f z ( ~ z ) f 1 1 2 ( ~ 1  + W;l1Wl2P2) 

where a subscripted f denotes a pdf. We show that 
the only solution for f that satisfies this equation is 
the normal distribution. Consequently both the if and 
only if portions of the theorem will be established. 

For n > 3,  we can divide the indices of W into three 
non-empty sets a, b and c. We group a and b to form 
a block and b and c to form a block. For each of the 
two cases, let W l l  be the block consisting of the in- 
dices in {a ,  b) or {b, c ) ,  respectively, and W z z  be the 

- -- block consisting of the indices of c or a ,  respectively. 
By the induction hypothesis applied to  both cases 
and marginalization we can assume that f l ( p l )  is a 
normal distribution N(p1 I v 1 ,  y1 ( W - l ) l l ) - l )  and that 
f z (pz)  = N ( p z I q ~ ,  -0(W-')z2)-~). Consequently, the 
pdf of the block corresponding to the indices in b is 
a normal distribution, and from the two alternative 
ways by which this pdf can be formed, it follows that 
7 1  = 7 2 .  

Let y = y i , i =  1,2, anddefine 

- Fzll(2) = f z l l ( ~ ) / N ( ~ 1 v z  + WG1W:z7)1,~Wz2) 

& I Z ( X )  = f i l z (~) /N(~1171 + W < ' W i z ~ z , y W i ~ ) .  

By substituting these definitions into Equation 29, 
substituting the normal form for f l  ( p l )  and f2 (pz) ,  
and canceling on both sides of the equation the term 
N ( p ( q ,  y W )  (which is formed by standard algebra per- 
taining to quadratic forms (E.g., DeGroot, pp. 55)), 
we obtain a new functional equation, 

Fzp(pz + w G 1 W ; z ~ 1 )  = Fllz(c11 + WG'WIZPZ) .  

By setting p2 = - ~ ; 2 l  ~ { , p l ,  we obtain Fl12((I - 
( W G ' W I Z ) ( W G ' W ~ ~ ) ) ~ I )  = F211(0) for every P I .  
Hence, the only solution to this functional equation 
is Fllz = Fzll constant. Consequently, f ( p )  = 
N(plv,  7 W ) .  

It remains to prove the theorem for n = 2. Let 
Z l  = PI, 22 = PZ + wG1w12111, L1 = p1 + w;:w12p21 
and Lz = p2. By our assumptions 2.1 and zz are in- 
dependent and L1 and L2 are independent. Further- 
more, rewriting L1 and Lz  in terms of zl and zz, we 

-1 -1 get, L1 = wll wzz (wllwzz - W : ~ ) I ~  + W ; ~ ~ W ~ Z Z Z  and 
Lz = zz - wG1wlzzl. All linear coefficients in this 
transformation are non zero due to  the fact that W 
is positive definite and that wlz is not zero. Cons- 
quently, due to the Skitovich-Darmois theorem, zl is 
normal and zz is normal. hrthermore, since zl and 
22 are independent, their joint pdf is normal as well. 
Finally, {p l ,p2)  and { z l ,  Z Z )  are related through a 
non-singular linear transformation and so {p l  , pz also 
have a joint normal distribution f ( p )  = N ( p  / q, A) 
where A = (adj) is a 2 x 2 precision matrix. Sub- 
stituting this solution into Equation 29 and compar- 
ing the coefficients of p:, P;, and plpz, we obtain 
alz/all  = w l ~ / w l l  and alz/azz = W I Z / W Z Z .  Thus 
A = yW where y > 0. 

The proofs of Theorems 6 and 8 can be combined 
to form the following characterization of the normal- 
Wishart distribution. 

Theorem 9 Let W be an n x n, n > 3, positive- 
definite symmetric matrix of real random variables 
such that no entry in W is zero, p be an n- 
dimensional vector of random variables, and f ( p ,  W )  
be a joint pdf of { p , W ) .  Then, f ( p ,  W )  is an n 
dimensional normal- Wishart distribution i f  and only 
if { P I ,  Wl1 - W ~ Z  w;,'w{,) is independent of {pz + 
WG1w:2p1, W12, W22) for eve.ry partitioning pl,  PZ of 
p where Wl1,Wl2, W l z ,  W z z  as a block partitioning of 
W compatible the partitioning p1, pz . 

Proof: The two independence conditions, {p l  , W l l  - 
W ~ Z W ~ ~ W ~ , )  independent of {pz + W ~ ; ~ W ; , ~ I ,  
Wl z ,  Wz2) and {pz ,  Wzz - W : z W ; ; l ~ l z )  independent 
of { P I  + ~ ; l l ~ l z p ~ ,  W i 2 ,  W l l ) ,  are equivalent to the 
following functional equation 

where a subscripted f denotes a pdf. We show that 
the only solution for f that satisfies this functional 
equation is the normal-Wishart distribution. Setting 
W to a fixed value vields Eauation 29 the solution of 
which for f is proportional tb N(p17, y W )  Similarly, 
the solutions for the functions f l ,  f 2 ,  f l l z ,  and f i l l  are 
also proportional to normal pdfs. The constants q and 
y could potentially change from one value of W to an- 
other. However, since q1 can only be a function of 
Wl1 - W~ZWT'W;, due to the solution for f l ,  and 
since it must d so  be a function of { W z z ,  W I Z )  due to 
the solution for f i l l ,  it cannot change with W .  Simi- 



224 Geiger and Heckerman 

larly qz cannot change with W .  Substituting this so- 
lution into Equation 30 and dividing by the common 
terms which are equal to  f ( p l W )  yields Equation 17 
the solution of which for f is a Wishart pdf. 

Note that the conditions set on W in Theorem 9, 
namely, a positive-definite symmetric matrix of real 
random variables such that no entry in W is zero, are 
necessary and sufficient in order for W to be a preci- 
sion matrix of a complete Gaussian DAG model. 

4 Local versus Global Parameter 
Independence 

We have shown that the only pdf for { p ,  W )  which sat- 
isfies global parameter independence, when the num- 
ber of coordinates is greater than two, is the normal- 
Wishart distribution. We now discuss additional in- 
dependence assertions implied by the assumption of 
global parameter independence. 

Definition Local parameter independence is the as- 
sertion that for every DAG model m for X i , .  . . , X,, 
there exists a partition of the parameters of each local 
distribution into at  least two independent sets. 

Consider the parameter prior for {m,, b,,v,) when 
the prior for { p ,  W )  is a normal Wishart as specified 
by Equations 12 and 13. By a change of variables, we 
get 

where the first block corresponds to X i , .  . . ,X,-1 
and the second block corresponds to X,. We note 
that the only independence assumption expressed by 
this product is that m, and b, are independent given 
v,. However, by standardizing m, and b,, namely 
defining, m: = (m, - v,)/(cu,/~,)'/~ and b: = 
( T ~ ~ / V , ) ~ I ~ ( ~ ,  - T;liT12), which is well defined be- 
cause Tzz  is positive definite and v, > 0,  we obtain a 
set of parameters (m:, b:, v,) which are mutually in- 
dependent. Furthermore, this mutual independence 
property holds for every local family and for every 
Gaussian DAG model over X i , .  . . , X,. We call this 
property the standard local independence for Gaussian 
DAG models. 

This observation leads to the following corollary of our 
characterization theorems. 

Corollary 10 If global parameter independence holds 
for every complete Gaussian DAG model over 
X i , .  . . , X ,  (n > 3 ) ,  then standard local parameter 
independence also holds for every complete Gaussian 
DAG model over X i , .  . . , X,. 

This corollary follows from the fact that global pa- 
rameter independence implies that, due to Theorem 9, 
the parameter prior is a normal-Wishart, and for this 
prior, we have shown that standard local parameter 
independence must hold. 

It is interesting to note that when n = 2, there are dis- 
tributions that satisfy global parameter independence 

but do not satisfy standard local parameter indepen- 
dence. In particular, a prior for a 2 x 2 positive defi- 
nite matrix W which has the form W ( W l a , T ) H ( w l z ) ,  
where H is some real function and wlz is the off- 
diagonal element of W ,  satisfies global parameter in- 
dependence but need not satisfy standard local param- 
eter independence. Furthermore, if standard local pa- 
rameter independence is assumed, then H(w12)  must 
be proportional to  eaWla, which means that,  for n = 2, 
the only pdf for W that satisfies global and standard 
local parameter independence is the bivariate Wishart 
distribution. In contrast, for n > 2, global parameter 
independence alone implies a Wishart prior. 

5 Discussion 

The formula for the marginal likelihood applies when- 
ever Assumptions 1 through 5 are satisfied, not only 
for Gaussian DAG models. Another important spe- 
cial case is when all variables in X are discrete and 
all local distributions are multinomial. This case has 
been treated in Heckerman et al. (1995; Geiger and 
Heckerman, 1997 \ under the additional assumption of 
local parameter independence. Our generalized deriva- 
tion herein dispenses this assumption and unifies the 
derivation in the discrete case with the derivation 
needed for Gaussian DAG models. 

Furthermore, our proof also suggests that the only pa- 
rameter prior for complete discrete DAG models with 
n > 3 variables that satisfies Assumptions 1 through 5 
is the Dirichlet distribution. The added assumption 
of local parameter independence, which is essential for 
the characterization of the Dirichlet distribution when 
n = 2 (Geiger and Heckerman, 1997), seems to be re- 
dundant when n > 3, just as it is redundant for the 
characterization of the normal-Wishart distribution. 

Our characterization means that the assumption of 
global parameter independence when combined with 
the definition of mh, the assumption of complete model 
equivalence, and the regularity assumption, may be 
too restrictive. One common remedy for this problem 
is to use a hierarchical prior p(O(q)p(q) with hyperpa- 
rameters q. When such a prior is used for Gaussian 
DAG models our results show that for every value 
of q for which global parameter independence holds, 
p(O1q) must be a normal-Wishart distribution. An- 
other possible approach is to  select one representative 
DAG model from each class of equivalent DAG models, 
assume global parametr independence only for these 
representatives, and evaluate the marginal likelihood 
only for these representatives. The difficulty with this 
approach is that when projecting a prior from a com- 
plete DAG model to  a DAG model with missing edges, 
one needs to  perform additional high dimensional inte- 
grations, before using the parameter modularity prop- 
erty (see Section 2). The assumption of global param- 
eter independence for all complete DAGs rather than 
one, removes the need for this additional integration. 
A final approach is to modify the definition of mh to 
allow equivalent DAG models to  have different param- 
eter priors. 
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